

 Rev. 1.32, August 22, 2021
Doug Sinclair, Cordell Grant

1. Revision Notes
This revision of the document contains the following changes relative to the previously

released version:

• Fixed typo in the caption of Table 49

2. Markings

ST-16 star trackers are laser-engraved with the text “ST-16” and a six-digital serial number

beginning with 001. The lens does not have any markings.

ST-16RT star trackers are laser-engraved with the text “ST-16RT”. The lens has a four-

digital serial number beginning with 01. ST-16RT units are not authorized for space-flight

use, and are intended as engineering models only.

ST-16RT2 star trackers are laser-engraved with the text “ST-16RT”. The lens has a four-

digital serial number beginning with 1. Thus, in order to tell the difference between a ST-

16RT and a ST-16RT2 the user must inspect the lens serial number.

To determine the electronics revision, and thus the pinout, the end-item data package must

be consulted. There is no externally observable marking denoting the electronics revision.

3. Mechanical

3.1. Interface Drawing

3.1.1. ST-16 Dimensions without Baffle

3.1.2. ST-16RT (Prism) Dimensions without Baffle

Optionally the spacecraft may use two 2 mm dowel pins to locate the star tracker. They

should be located as shown.

3.1.3. ST-16RT2 (Prism) Dimensions without Baffle

Optionally the spacecraft may use two 2 mm dowel pins to locate the star tracker. They

should be located as shown.

3.1.4. ST-16RT2 (Polished Corners) Dimensions without Baffle

Optionally the spacecraft may use two 2 mm dowel pins to locate the star tracker. They

should be located as shown.

3.1.5. ST-16 Dimensions with Short Rigid Baffle

The baffle shown here is the third generation “lathed baffle” design. Previous machined

and electroformed baffle styles for the ST-16 are now obsolete.

3.1.6. ST-16RT2 Dimensions with Short Rigid Baffle

Note, the Short Rigid Baffle for the ST-16RT2 is not equivalent to the Short Rigid Baffle

for the ST-16 (see Section 3.1.5).

3.1.7. ST-16RT2 Dimensions with Long Rigid Baffle

3.2. Mass Properties

Table 1: Mass Properties

ST-16 with No Baffle , including dust cap 85.0 g ± 1.0

ST-16 with Short Rigid Baffle 128.5 g ± 1.0

ST-16RT with Prism, no Baffle 153 g

ST-16RT2 with Prism, no Baffle 150 g

ST-16RT2 with Polished Corners, no Baffle 147 g

ST-16RT2 with Polished Corners, Short Rigid Baffle 180 g

ST-16RT2 with Polished Corners, Long Rigid Baffle 230 g

The mass does not include any connector saver, mating connector, or mounting hardware.

3.3. Star Tracker Mounting Points

The star tracker attaches to the host spacecraft with a stable three-point mount. Three

through-hole mounting points are provided. These are 3.1 mm in diameter, and are

intended to accept M3 hardware. #4 hardware is also acceptable if preferred by the

customer. Washers or screw heads should be no more than 8 mm in diameter. The use of

soft plastic washers is recommended for non-flight mounting to avoid marring the star

tracker surface.

The body of the star tracker is made from aluminum. The bulk of it is black anodized, but

the bottoms of the three mounting feet have yellow chemical conversion coating. This

material is electrically conductive, and is used as the grounding path for the device. Note

that the mounting screws will bear on the anodized top surface, and so the screws are not

guaranteed to be grounded on the star tracker side.

In addition to the three screws there is provision to accept two alignment pins. These pins

should be precision M2. The flat mounting surface on the spacecraft defines a plane, and

the pins then constrain the rotation of the star tracker within this plane.

The star tracker structure is a snug fit on the pins, as is necessary for tight tolerance. The

pins may cause some marring of the anodize coating in the star tracker alignment grooves.

This is normal. When removing the star tracker from a pinned mounting be careful to

withdraw it without any rotation which could cause it to bind. When building GSE

mounting plates it may be useful to add holes to the bottom to allow the star tracker to be

gently ejected.

3.4. Alignment Reference Surface

The ST-16RT and ST-16RT2 star trackers have either a precision prism installed or have

two integral polished corners. The polished corners have replaced the bonded prism. Both

features can be used to more accurately survey the alignment of the star tracker relative to

the spacecraft payload. See Section 11 on frames on reference for further details.

3.5. Baffle Mounting Points

There are points on the top surface of the star tracker intended to receive a baffle. If a

baffle has been provided by Sinclair Interplanetary, then these points will already be

occupied. Otherwise, the customer may use these to attach a rigid or deployed baffle or

other structure.

The ST-16 has three points are located on a 38 mm diameter bolt circle. Each will accept

an M2.5x0.45 screw to a maximum depth of 4 mm. Stainless steel anti-seizing helical

inserts are installed in these holes to prevent damage to the aluminum structure. The screw

threads may or may not be grounded – external grounding wires are recommended for solid

baffle grounding.

The ST-16RT and ST-16RT2 have six points located on a 34 mm diameter bolt circle.

Each will accept an M2.5x0.45 screw to a maximum depth of 4 mm. Stainless steel anti-

seizing helical inserts are installed in these holes to prevent damage to the aluminum

structure. The screw threads are grounded. An O-ring groove allows the baffle to seal

tightly to the star tracker chassis.

Table 2: Entrance Pupil Geometry

Star Tracker

Model

Entrance Pupil

Diameter

Entrance Pupil Location

ST-16RT 9.96 mm 27.47 mm above mounting plane

ST-16RT2 10.23 mm 27.44 mm above mounting plane

If the baffle is customer-designed, the engineer will need to know the location of the star

tracker entrance pupil. This is given in the table above. The mounting plane is the interface

plane between the star tracker and the host spacecraft, not the star tracker and the baffle.

3.6. Vent

The star tracker is fitted with a filtered vent located on the bottom cover. This allows

internal gasses to be released upon ascent on the launch vehicle. The vent is covered with

a porous Teflon filter which will trap all particles 1.0 m and larger. It will also prevent

gross intrusion of liquids, making the sensor somewhat “splashproof”. Note that it will not

prevent water vapour from entering the sensor and condensing inside.

User cautions associated with the vent are:

1. Ensure that the vent is not covered on the satellite, and in storage. If the star tracker

is mounted to a flat plate there is adequate clearance for the vent.

2. Do not submerge the star tracker in cleaning solvents. Use great caution when

cleaning the bottom surface to minimize the fluid that enters the vent hole.

3. Do not poke the vent hole with sharp objects.

4. Store the star tracker in a clean environment that is temperature and humidity

controlled.

3.7. Fluorine Outgassing

Star trackers that use Rev 4 electronics (typically 4 V input voltage units) contain internal

Tefzel type wiring that will slowly offgas minute quantities of fluorine. These units must

be stored in a ventilated space so that fluorine does not build up and cause corrosion.

Star trackers that use Rev 5 or later electronics replace the internal wiring with a flex

circuit. They do not produce any fluorine, and can be safely stored either in a ventilated

clean space or in a sealed container with desiccant.

3.8. Lens Cleaning

When the baffle is not installed the lens is easily accessible, and can be cleaned using

conventional camera-cleaning products. The front surface is glass, and so care should be

taken to avoid scratching. Do not under any circumstances attempt to unscrew the lens

from the star tracker body as the precision focus will be lost.

Once a baffle is installed it is extremely difficult to clean the lens. It is suggested that the

star tracker be kept in a clean environment, or capped, at all times when a baffle is used.

3.9. Dust Covers

The ST-16 star tracker is supplied with a black plastic cover on the lens. This must be

removed before flight, and before the installation of any baffle. The ST-16RT and ST-

16RT2 are fitted with a machined aluminum lens cover which is removed with a

screwdriver.

The connector is recessed into the star tracker body such that a standard dust cap will not

fit. If specified, the unit will ship with an attached connector saver.

3.10. Connector

The connector built into the star tracker is a Glenair part MWDM2L-9S-0J7-18B (rev 4)

or MWDM2L-9S-5C3-.125B (rev 5 and later). It is built on the same line and to the same

drawings as MIL-DTL-83513 parts, but is provided without the certifications to reduce the

price. The built-in connector has socket contacts and is fitted with jackposts.

Star trackers may be supplied with a mating connector. This is Glenair part MWDM2L-

9P-4J7-72M. It has pin contacts, and is fitted with jackscrews. There are nine flying leads,

each 72” long. The leads are made from 24 AWG high-strength copper wire with ETFE

insulation per M22759/33. Leads are identified by colour. Fluorine outgassing precautions

must be observed with these materials.

3.11. Interface Configurations

The star tracker is available from the factory with a number of electrical interface options.

The following three options can be built on the 4 V (Rev 4b) PCB by selective component

population.

• RS485 (compatible with RS422)

• ASYNC

• CAN

The 28 V (Rev 5) PCB can be configured for Dual RS485 (compatible with RS422) or

RS485 + CAN.

3.12. Pinout

Table 3: Connector Pinout, 4 V Option

Pin

Number

Wire

Colour

RS485

Option

ASYNC

Option

CAN

Option

1 Black Power Ground

2 Brown Telemetry A Command CAN_L

3 Red Command A Command CAN_L

4 Orange Address Ground

5 Yellow /Reset

6 Green Power In

7 Blue Telemetry B Telemetry CAN_H

8 Violet Command B Telemetry CAN_H

9 Grey Address In

Table 4: Connector Pinout, 28 V Option

Pin Number Wire

Colour

Dual RS485 Option RS485 + CAN Option

1 Black Chassis Ground Chassis Ground

2 Brown Power In 1 Power In 1

3 Red RS485-1 A CAN_H

4 Orange RS485-0 A RS485-0 A

5 Yellow Power Ground Power Ground

6 Green Power Ground Power Ground

7 Blue RS485-1 B CAN_L

8 Violet RS485-0 B RS485-0 B

9 Grey Power In 2 Power In 2

Table 3 shows the connector pinout for the various 4 V build options. Table 4 shows the

pinout for star trackers built with 28 V interface. The wire colour is provided for

convenience, for those instances where Sinclair Interplanetary provides a mating connector

with the star tracker.

3.13. Thermal

3.13.1. Thermal Environment

Operating Temperature -40 ºC to +50 ºC

Survival Temperature -40 ºC to +95 ºC

The temperature is defined as the Detector Temperature field in the Hardware Telemetry

structure. At the high limit of the operating temperature, dark noise in the detector

increases to the point where stars can no longer be detected. There is no danger of hardware

damage* at this point, but the star tracker will not reliably produce quaternions.

* Caution: Star trackers sold with short rigid baffles are provided with a yellow dust cover

installed on the end of the baffle. This cover is NOT compatible with the hot survival

temperature of the star tracker and should be removed prior to any thermal testing that will

or could approach the Survival extremes. If the cover is removed, care must be taken to

ensure alternate dust protection is provided.

3.13.2. Thermal Interface

The thermal interface to the spacecraft is through conduction. There are 3 mounting feet.

For the ST-16, the total area is 168 mm2. For the ST-16RT2, the total area is 187 mm2.

The contact material is aluminum 6061-T6, with yellow chemical film coating.

The black areas on the body of the star tracker are aluminum 6061-T6, treated with a thick

sulfuric acid anodize. If a baffle is fitted, the baffle is also made from aluminum 6061-T6.

Yellow areas on the baffle are chemical film coating. Black areas on the baffle are the

proprietary Deep Space Black coating from N-Science. The baffle is conductively

connected to the body of the star tracker.

In normal operation, the maximum heat load generated by the star tracker is 1.0 W. Since

the star tracker may be exposed to the outside of the spacecraft, it will also be radiatively

coupled to space, sun and Earth. This can result in large positive or negative heat flows

through the mounting feet.

3.13.3. Alternate Baffle Coatings

Sinclair Interplanetary does not provide alternate baffle coatings. Some customers have

chosen to apply their own coatings to baffles after delivery. These have included:

• White paint on the outside of the baffle

• Multi-layer insulation (MLI) jacket to cover the outside of the baffle and the star

tracker body

Many users mount the star tracker and baffle behind a structural panel, looking out through

a circular cutout. This panel provides radiative isolation from space.

4. Protocol Layer 1 (Physical Layer)

4.1. Power Ground

All signals are referred to Power Ground. The 28 V electronics has multiple Power Ground

lines, connected together inside the star tracker. Power Ground is connected to the chassis

by three capacitors and one 1 M resistor. In the 4 V option the capacitors are 10 nF, 50

V each. In the 28 V option the capacitors are 33 nF, 100 V each.

4.2. Chassis Ground (28 V option only)

Table 5: Chassis Ground Parameters

Absolute Maximum -50 V to +50 V WRT

Power Ground

The Chassis Ground signal is connected to the star tracker housing. It can be used to

terminate harness shields if required.

4.3. Power In (4 V option only)

Table 6: Power In Parameters

Operating Range (CAN option) +4.5 V to +5.5 V

Operating Range (Other options) +3.3 V to +6 V

Absolute Maximum (CAN

option)

-20 V to +6 V

Absolute Maximum (Other

options)

-20 V to +20 V

The unit is powered from the Power In signal, which should be connected to a positive

voltage with respect to Power Ground. Several built-in linear and switch-mode power

supplies generate the internal voltages from this signal. When built with the CAN

configuration the CAN transceiver is powered directly from the Power In voltage. This

constrains the operating and absolute maximum ranges.

A MOSFET protection switch disconnects the internal supplies when the Power In signal

is out of range, protecting the unit from damage in the event of inverted power polarity or

unexpectedly high voltages. This switch has a finite turn-off time. Complete protection is

not guaranteed in a scenario where the Power In signal suddenly jumps up to a high voltage

from a voltage within the Operating Range.

Table 7: Typical Power Consumption, RS485 Configuration

Bootloader mode 6 mA @ 5 V

Idle mode 18 mA @ 5V

Processing mode 250 mA @ 5V peak

150 mA @ 5V typical

Maintenance mode 60 mA @ 5V

Table 7 shows some typical measured power consumption values. In general the

supervisor circuits, which are responsible for the bootloader and idle mode, run from linear

regulators. Thus, their current consumption is constant regardless of input voltage. The

functional circuits, which are responsible for the bulk of the processing and maintenance

mode power, run from DC/DC converters. Thus, at higher voltages they will consume less

current.

4.4. Power In [1..2] (28 V option only)

Table 8: Power In[1..2] Parameters

Operating Range +9 V to +34 V

Absolute Maximum WRT Power

Ground

-50 V to +50 V

Absolute Maximum Differential

between Power In 1 and Power In 2

-50 V to +50 V

The unit can be powered from either the Power In 1 or Power In 2 signal. Internal diodes

select the signal with the highest voltage. These diodes also prevent damage in the case of

a shorted or reversed power bus.

The lower end of the operating range is determined by the built-in under-voltage lockout

circuit. Contact the factory for units with wider operating ranges, down to as low as 5 V.

Table 9: Typical Power Consumption, RS485 Configuration

Bootloader mode 5.5 mA @ 28 V

Idle mode 7.6 mA @ 28 V

Processing mode 55 mA @ 28 V peak

26 mA @ 28 V typical

Maintenance mode 14.0 mA @ 28 V

Table 9 shows some typical measured power consumption values.

4.5. Address (4 V option only)

Table 10: Address In Parameters

Absolute

Maximum

-15 V to + 20 V

Logic High > 2.3 V

Logic Low < 1.0 V

Protection 2 k series resistor,

6.8 V TVS diode

Termination ~100 k to +3.3 V

The star tracker determines its network address from the cable harness. If the Address In

signal is shorted to Address Ground, then the unit is designated Star Tracker A. If the

Address In signal is disconnected then the unit is designated Star Tracker B.

The Address Ground signal is directly connected to Power Ground inside the unit. While

Address In is technically a digital input, it is strongly suggested that it be used only for

addressing purposes by hard-wiring to Address Ground or isolating. If shorting the two

signals together, do so close to the connector. If isolating, cut the wire short near the

connector. This will help to reduce radiated susceptibility EMC problems.

4.6. /Reset (4 V option only)

Table 11: /Reset Parameters

Absolute

Maximum

-15 V to + 20 V

Logic High > 2.3 V

Logic Low < 1.0 V

Protection 2 k series resistor,

6.8 V TVS diode

Termination 2 k to +3.3 V

The /Reset signal is used in the factory during the bootloader programming operation. In

flight it should be left unconnected, with the wire snipped as close to the connector as

possible. The internal pull-up resistor will keep the star tracker running normally.

4.7. Command [A|B] (RS485)

Table 12: Command Parameters (RS485)

Absolute Maximum -11 V to +15 V, each signal, WRT Power Ground

ESD rating ±15 kV (Human-body model)

Polarity B > A in Mark (Idle, “1”) state

A > B in Space (On, “0”) state

Input Resistance > 96 k each signal to Power Ground

Input Differential Threshold ± 0.2 V max

The RS-485 pair carrying commands from the spacecraft to the star tracker is called

Command. Pay very careful attention to the polarity designation. The formal standard of

EIA/TIA-485 is used. Some devices/chips use incorrect A/B designations.

The Command signals are inputs to the star tracker. No line termination is used.

Star trackers will only interpret commands that are addressed to them. Thus, two star

trackers with different NSP addresses can share a common Command link.

4.8. Telemetry [A|B] (RS485)

Table 13: Telemetry Parameters (RS485)

Absolute Maximum -11 V to +15 V, each signal, WRT Power Ground

ESD rating ±15 kV (Human-body model)

Polarity B > A in Mark (Idle) state

A > B in Space (ON) state

Differential Output Voltage > 2 V into 50  termination.

> 1.5 V into 27  termination.

Short-circuit Output Current 300 mA max

Three-State Output Current ± 10A max

Output Impedance 100  @ 100 MHz, common-mode

The RS-485 pair carrying telemetry from the star tracker to the spacecraft is called

Telemetry. Pay very careful attention to the polarity designation. The formal standard of

EIA/TIA-485 is used. Some devices/chips use incorrect A/B designations.

The Telemetry signals are outputs from the star tracker. When there is no data to transmit

the star tracker will three-state its outputs to allow another unit to drive the bus. Thus two

star trackers can share a common Telemetry link.

The Telemetry line driver IC is equipped with an overtemperature shutdown feature

which will turn it off if it overheats: for example, if the bus is short-circuited for an

extended period.

4.9. RS-485-[0|1] [A|B] (28 V option only)

Table 14: RS-485 Parameters

Absolute Maximum -70 V to +70 V, each signal, WRT Power Ground

ESD rating ±16 kV (Human-body model)

Polarity B > A in Mark (Idle) state

A > B in Space (ON) state

Differential Output Voltage > 1 V into 54  termination.

Short-circuit Output Current 200 mA max

Input Resistance > 96 k each signal to Power Ground

Input Differential Threshold -0.18 V to -0.035 V

Three-State Output Current ± 100 A max

The 28 V option electronics feature one or two bidirectional RS485 pairs. Pay very careful

attention to the polarity designation. The formal standard of EIA/TIA-485 is used. Some

devices/chips use incorrect A/B designations.

4.10. Command (ASYNC)

Table 15: Command Parameters (ASYNC)

Absolute Maximum -15 V to +20 V, WRT Power Ground

Input Voltage WRT Power

Ground

> 2.2 V in Mark (Idle, “1”) state

< 0.7 V in Space (On, “0”) state

Input Resistance ~100 k to +3.3 V

The low-voltage CMOS signal carrying commands from the spacecraft to the star tracker

is called Command. The Command signal is an input to the star tracker. No line

termination is used, but a small current source biases the signal high if it is left floating.

Star trackers will only interpret commands that are addressed to them. Thus, two star

trackers with different NSP addresses can share a common Command link. The Command

signal is available on two pins to facilitate daisy-chain wire harnesses.

4.11. Telemetry (ASYNC)

Table 16: Telemetry Parameters (ASYNC)

Absolute Maximum -15 V to +20 V, WRT Power Ground

Output Voltage +3.3 V in Mark (Idle, “1”) state, 4.7 k series

V in Space (On, “0”) state, 4.7 k series

+3.3 V in high-Z state, ~100 k series

Short-circuit Output Current 300 mA max

Three-State Output Current ± 10A max

Output Impedance 100  @ 100 MHz, common-mode

The low-voltage CMOS signal carrying telemetry from the star tracker to the spacecraft is

called Telemetry. The Telemetry signal is an output from the star tracker. When there is

no data to transmit the star tracker will three-state its outputs to allow another unit to drive

the bus. Thus two star trackers can share a common Telemetry link.

The telemetry output has a series resistor to limit the current. It also has a small current

source to bias the signal high in high-Z mode. Care must be taken to ensure that the pull-

up is sufficient, but also that the signal has enough drive to overcome external pull-up

devices in the Space state.

4.12. CAN[_L|_H] (CAN)

Table 17: CAN Parameters

Absolute Maximum -80 V to +80 V, each signal, WRT Power Ground

(4 V option)

-36 V to +36 V, each signal, WRT Power Ground

(28 V option)

(But do not exceed 0.25 W continuous into

termination resistor if installed)

Input Common Mode Range -7 V to +12 V

Dominant Input Voltage VCANH – VCANL = 0.9 V to 3.3 V

Recessive Input Voltage VCANH – VCANL = -1.0 V to +0.5 V

Input Hysteresis 0.15 V typ (4 V)

0.1 V typ (28 V)

Dominant Output Voltage VCANH – VCANL > 1.5 V into 45 Ω load (4V)

VCANH – VCANL > 2.3 V into 60 Ω load (28V)

Slew Rate Configurable – Contact factory

The CAN_L and CAN_H signals comprise a differential pair used for both input and

output. In the 4 V option the signals are available on two pins each to facilitate daisy-chain

wire harnesses.

4.13. Full- and Half-Duplex Operation

4.13.1. 4 V Option

The CAN bus is inherently half-duplex, and the CAN pinout is compatible with daisy-chain

wiring by default. The 4 V ASYNC and RS485 options can be used in either full-duplex

or half-duplex modes.

Full-duplex is the nominal case. The star tracker has separate Command and Telemetry

lines. If there are multiple units on one bus, all of the Command lines are connected

together, and all of the Telemetry lines are connected together. The ASYNC pinout permits

daisy-chaining in full-duplex mode. The RS485 pinout does not provide for internal

loopback, so the wire connections to put multiple units on one bus must be made elsewhere

within the spacecraft.

Half-duplex is achieved by connecting the Command and Telemetry lines together. For

ASYNC builds, the Command and Telemetry wire would be connected. For RS485,

Command A would be connected to Telemetry A and Command B would be connected to

Telemetry B. Half-duplex operation uses fewer wires and does not impact the data

throughput. However, the flight computer can no longer shout over a misbehaving

subsystem, so take care when attaching critical devices (such as power switch units) to

shared half-duplex busses.

Half-duplex operation can be implemented by connecting wires together outside the star

tracker. For ASYNC units, one of the command wires can be connected to one of the

telemetry wires right at the mating connector. RS485 units can also be operated in half-

duplex mode with external splices. Alternatively, jumpers can be installed inside the unit

by special order.

4.13.2. 28 V Option

The 28 V option star tracker can have its communications configured in a number of

different ways. If the dual RS485 option is selected, the two pairs can be used as follows:

• Two pairs can be used together to make a 4-wire full-duplex RS485 connection

(compatible with RS422) handing NSP packets.

• Each pair can be used as a half-duplex RS485 connection handling NSP packets.

Thus there are two independent redundant NSP links.

• One pair (RS485-0) can be used as a half-duplex RS485 connection handling NSP

packets. The second pair (RS485-1) can be used as a synchronization pulse input

or output.

If the CAN option is selected then the CAN bus is inherently a half-duplex communications

link. The RS485 pair can then be used for:

• An additional half-duplex RS485 connection handling NSP packets.

• A synchronization pulse input or output.

• A redundant CAN bus selector. The RS485 pair can drive an external DPDT

latching relay (some diodes may also be needed) to connect the CAN pair to one

of two external busses.

Other uses are also possible. An unused communications pair could drive external bakeout

heater, Peltier cooler or baffle deployment actuators, for example.

5. Protocol Layer 2 (Data Link Layer)

5.1. Asynchronous Serial

Units built with the ASYNC and RS485 options use an asynchronous serial protocol. The

parameters are programmed into the unit bootloader at the factory, and special-order units

with different parameters are available.

Table 18: Default Asynchronous Serial Parameters

Nominal Baud Rate 115.2 kbps

Data bits per byte 8

Parity None

Stop bits 1

Each word begins with a start bit with space (0) value. Eight data bits follow, with the LSB

sent first and the MSB last. Finally, a stop bit is sent with mark (1) value. Once the stop

bit has concluded the output transmitter may be disabled if there are no further words to

follow.

The actual output baud rate may deviate slightly from the nominal due to inaccuracies in

the star tracker master oscillator. Revision 4 and 5a star trackers use a trimmed CMOS

oscillator with ±0.5% tolerance. Revision 5b star trackers use a MEMS silicon oscillator

with quartz-like accuracy.

Table 19: Actual Asynchronous Serial Baud Rates

Actual Telemetry Baud Rate 114.8 kbps to 116.0 kbps

Permissible Command Baud Rate 111.9 kbps to 118.8 kbps

5.2. CAN

Units built with the CAN option use the ISO 11898 CAN protocol. The baud rate is

programmed into the unit bootloader at the factory, and should be negotiated at the time of

purchase. Rates of up to 2 Mbps can be achieved. The star tracker’s CAN controller is fed

by a 24 MHz clock with ±0.5% tolerance. This information can be used to calculate the

actual and permissible CAN baud rates.

6. Protocol Layer 3 (Network Layer)

NSP is the Nanosatellite Protocol, originally developed at UTIAS/SFL for use on the CanX

nanosatellites. This in turn is descended from the Simple Serial Protocol (SSP) used by

UTIAS/SFL and Dynacon on the MOST and CHIPSAT spacecraft as well as the Dynacon

reaction wheels in the wider market.

The star tracker uses NSP messages for all communication. This includes communication

between the host spacecraft and the supervisor processor, as well as communication

between the internal supervisor and functional processors. NSP messages sent between the

host and the star tracker must be encapsulated in a manner compatible with the data link

layer.

6.1. Asynchronous Serial NSP Encapsulation

NSP messages are encapsulated for transmission on an asynchronous serial channel using

SLIP framing, as described in RFC 1055. This is required in order to indicate the beginning

and end of NSP messages.

Table 20: SLIP Framing Special Characters

FEND 0xC0

FESC 0xDB

TFEND 0xDC

TFSEC 0xDD

Each NSP message is transmitted with a FEND character added to the beginning and end.

Whenever FEND would occur within the message it is replaced by two bytes: FESC

TFEND. Whenever FESC would occur within the message it is replaced by FESC TFESC.

6.2. CAN NSP Encapsulation

The mechanism for encapsulating NSP messages into one or more CAN messages is TBD.

7. Protocol Layer 4 (Transport Layer)

7.1. Command and Reply

The star tracker generates telemetry messages in response to command messages received.

In the usual case, a single telemetry message will be sent as quickly as possible after

reception of the command.

Some commands will take a period of time to execute, and will only generate a telemetry

message when they are complete. The star tracker should be considered to own the

communications bus while such a command is executed, so do not send additional

commands to it or any other unit until the reply is complete.

Some commands may generate more data than can be fit into a single telemetry message.

In this case a sequence of telemetry messages will be sent back-to-back to carry the

required data. The last message will be indicated using the P/F bit.

Notwithstanding the above, the star tracker will not generate messages that are not linked

to a command. The host spacecraft must poll it to determine its status and to read telemetry.

7.2. NSP Message Format

Table 21: NSP Message Fields

Length Field

1 byte Destination Address

1 byte Source Address

1 byte Message Control Field

0 or more bytes Data Field

2 bytes Message CRC

Each NSP message has the format shown above. The shortest possible messages are 5

bytes (with zero data, not counting framing).

The supervisor bootloader supports a maximum data length of 516 bytes, giving a total

message length of 521 bytes. The supervisor application program and the functional

processor software both support a maximum data length of 1028 bytes, giving a total

message length of 1033 bytes.

Note that network-layer framing may add additional bytes to the message as it is

transmitted.

7.3. NSP Address

Each star tracker contains two distinct processors: the supervisor processor and the

functional processor. Each has its own NSP address.

The supervisor processor is responsive whenever the star tracker is turned on. Direct

communication between the functional processor and the outside is possibly only when the

supervisor processor is configured to forward packets, typically during troubleshooting or

reconfiguration operations.

The user is free to pick one or more NSP addresses for flight computers and other units

that may talk to the star tracker. Avoid choosing the SLIP framing characters FEND

(0xC0) and FESC (0xDB), as well as the reserved address 0x00. By convention the flight

computer would normally use NSP address 0x11.

Whenever the star tracker generates a reply message, its destination address is equal to the

source address of the corresponding command message. Other than this, the star tracker

pays no attention to the NSP addresses used by the host spacecraft.

7.3.1. 4 V NSP Addresses

Table 22: 4 V NSP Addresses

 Star Tracker A Star Tracker B

Supervisor Processor 0x0C 0x0Eh

Functional Processor 0x0D 0x0Fh

Table 22 shows the NSP addresses of both processors, as a function of the Star Tracker

A/B designation. The A/B designation is controlled by the Address In pin.

7.3.2. 28 V NSP Addresses

The 28 V (Revision 5) star trackers have a different addressing scheme. In bootloader

mode, the supervisor processor has the following address options:

Table 23: 28 V Supervisor NSP Addresses

Supervisor NSP Address Command Port Telemetry Port

0x0A RS485-0 RS485-0

0x0C RS485-0 RS485-1

0x0E RS485-1 RS485-0

0x08 RS485-1 RS485-1

The supervisor bootloader will accept any of the above addresses, provided the command

comes in on the appropriate command port. The associated reply will be sent on the

appropriate telemetry port. Thus, addresses 0x0A and 0x08 are half-duplex, while 0x0C

and 0x0E are full duplex.

When the supervisor is commanded to transition from bootloader to idle mode, the

addressing used in that INIT command is latched. From that point on, the supervisor will

only respond to that one address, received on that one command port. Similarly, telemetry

will only be sent to the appropriate selected port.

The functional processor address is determined from the supervisor address, as shown.

Table 24: 28 V Functional Processor Address

Supervisor Processor Address Functional Processor Address

0x08 0x09

0x0A 0x0B

0x0C 0x0D

0x0E 0x0F

7.3.3. Multicast Address

The supervisor processor will respond to an additional NSP address, called the multicast

address. Multicast commands will never generate replies. Multicast functionality is not

available in bootloader mode. The functional processor has no multicast address.

Table 25: Multicast Addresses

Supervisor Multicast Address 0x07

7.4. Message Control Field

Table 26: Message Control Field

Bit 7 (MSB) “Poll/Final” Bit

Bit 6 “B” Bit

Bit 5 “ACK” Bit

Bits 4 – 0 Command code

The message control field packs four values into a single byte. The command code is an

enumerated value between 0x00 and 0x1F that determines how the data field should be

interpreted.

The “ACK” bit is ignored on commands coming into the star tracker. On telemetry reply

messages sent by the star tracker it is set to indicate successful execution of the command,

or cleared to indicate that the command cannot be executed.

The “B” bit is copied unchanged from a command message into its reply message. The

star tracker does not use it internally.

The “Poll/Final” bit is interpreted differently for command and telemetry messages. For a

command, the bit is “Poll”. If it is set to ‘1’ then the star tracker will generate a telemetry

message in reply. If it is cleared to ‘0’ then the command will be executed, but no response

telemetry message will be sent.

For a telemetry message, the bit is “Final”. If a reply consists of a single telemetry message,

then the bit is set to ‘1’. If a reply is too large to fit into a single message then the final

message has the bit set to ‘1’ and the others have the bit cleared to ‘0’.

7.5. Data Field

The interpretation of the data field is dependent on the command code in the message

control field. Some command codes may have no data, some may require a certain fixed

number of data bytes, and some can accept a variable data length.

7.6. Message CRC

Each NSP message contains a 2 byte (16-bit) CRC to guard against errors in transmission.

The 16-bit CCITT polynomial is used: x^16 + x^12 + x^5 + 1. The initial shift register

value is 0xFFFF. Bytes are fed into the CRC computation starting with the destination

address, and concluding with the last byte of the data field. Within a byte, bits are fed in

LSB first.

The following fragment of C code, courtesy of Henry Spencer, illustrates how the CRC

can be computed.
#define POLY 0x8408 /* bits reversed for LSB-first */

unsigned short crc = 0xffff;

while (len-- > 0) {

unsigned char ch = *bufp++;

for (i = 0; i < 8; i++) {

crc = (crc >> 1) ˆ (((ch ˆ crc) & 0x01) ? POLY : 0

);

ch >>= 1;

}

}

7.7. Error Conditions

The star tracker will ignore NSP command messages where the destination address does

not correspond to the NSP address of either the supervisor or functional processor. NSP

messages addressed to the functional processor will be ignored if the unit is not in

maintenance mode. NSP messages with invalid CRC, invalid encapsulation, too short or

too long are also ignored. In none of these cases will any reply message be generated.

If an NSP command message is in error due to an unknown command code, or if the data

field is not consistent with the requirements of the command code, and if the “Poll” bit is

set, then a NACK reply message will be generated. This message will be the same length

as the command message, and contain the same data field. The command code will be the

same, as will the “B” bit. The “ACK” bit will be cleared to ‘0’.

7.8. Command Timing

For the star tracker attitude data to be useful, it is necessary to communicate quaternion

epoch information with the host spacecraft. In those configurations where a discrete

synchronization pulse connection is not available, timing information is carried over the

command and telemetry serial link.

When a command is sent by the host to the supervisor processor, the time that the packet

is received is recorded. This is defined as the time of reception of the final FEND,

including the stop bit. The host spacecraft may elect to transmit most of a command, and

then delay the final FEND until the exact desired moment. Since there are no timeouts on

the NSP link this delay can be arbitrarily long.

When the star tracker returns epoch information in telemetry, the time is measured relative

to the FEND character that finishes the GO or COMBINATION command that has caused

the imaging cycle.

8. Protocol Layer 5 (Session Layer)

8.1. Operating Modes

Figure 1: Mode Transition Diagram

Power-on starts the unit in bootloader mode. The remaining mode transitions have the

following triggers. In each case where a mode transition is caused by a command, the

command is assumed to have been addressed to the supervisor processor.

Bootloader Idle

Processing

Maintenance

Application

Table 27: Mode Transition Mechanisms

 From

Bootloader Idle Processing Maintenance Application

To

Bootloader
 Supervisor INIT

with no data

Supervisor INIT with

no data

Supervisor INIT with

no data

Supervisor INIT with

no data

Idle

INIT with data

0x00002000

 Emergency notification

GO requesting

functional processor

turn-off

Timeout, if GO

command does not

permit remaining on

Processing complete, if

GO command does not

permit remaining on

Emergency

notification

GO requesting

functional processor

turn-off

Timeout, if GO

command does not

permit remaining on

Emergency

notification

Go requesting

functional processor

turn-off

Timeout, if GO

command does not

permit remaining on

Processing

 GO requesting

turn-on, boot

from NAND,

and control

structure sent

 GO requesting turn-

on, boot from

NAND, and control

structure sent

GO requesting turn-

on, boot from

NAND, and control

structure sent

Maintenance

 GO requesting

turn-on, boot

from supervisor

flash

GO requesting turn-on,

boot from supervisor

flash

 GO requesting turn-

on, boot from

supervisor flash

Functional INIT with

no data

Application

 GO requesting

turn-on, boot

from NAND, no

control structure

sent

GO requesting turn-on,

boot from NAND, no

control structure sent

Processing complete, if

GO command permits

remaining on

GO requesting turn-

on, boot from

NAND, no control

structure sent

Functional INIT with

data 0x00008000

Table 28: Mode Description

Mode Supervisor Processor Functional Processor Detector

Bootloader Running bootloader software.

Vdd regulator at 2.5 V

Clock at 6 MHz

Polling communication
Powered Off

Powered Off

Idle

Running application software

Vdd regulator at 2.1 V

Clock at 48 MHz

Interrupt driven

Processing Powered On

Clock at 480 MHz

Busy processing star data

Powered On

Pixel clock at 85 MHz

Application Powered On

Clock at 96 MHz

Polling for NSP messages

Running code from DRAM,

copied from NAND image
Powered On

Held in reset, unclocked
Maintenance Powered On

Clock at 96 MHz

Polling for NSP messages

Running code from SRAM,

copied from boot image or sent

from supervisor

The table above shows the configuration of the major hardware elements in the different modes.

8.2. Self-Test Sequence

The star tracker can be commanded to run a self test sequence. It will run through the

following steps:

1. Turn on the main power switch. Log analog telemetry. Wait 1 second.

2. Turn on the +1.8 V Vdd IO rail. Log analog telemetry. Wait 1 second.

3. Turn on the +2.8 V detector rail. Log analog telemetry. Wait 1 second.

4. Turn on the Vdd core rail. Log analog telemetry. Wait 1 second.

5. Turn on the Vdd MPU rail. Log analog telemetry. Wait 1 second.

6. Release the functional processor reset signal. Log analog telemetry.

7. Boot the functional processor. Switch to full speed. Put the power supplies into

default state. Log analog telemetry. Wait 1 second.

8. Command the Vdd MPU rail up to its maximum voltage. Log analog telemetry.

Wait 2 seconds.

9. Command the Vdd MPU rail to its default. Command the Vdd core rail to its

maximum voltage. Log analog telemetry. Wait 2 seconds.

10. Command the Vdd core rail to its default. Command the Vdd IO rail to its

maximum voltage. Log analog telemetry. Wait 2 seconds.

11. Command Vdd IO rail to its default. Engage Smart Reflex dynamic voltage

adjustment. Configure the detector for a diagonal test pattern and read one image.

Log analog telemetry.

12. Read second image. Wait 1 second. Compare the images to the predicted test

pattern, and to each other. Log analog telemetry.

13. Configure the detector with its operational settings and read two images. Return

hardware health telemetry. Log analog telemetry. Wait 1 second.

14. Compute image statistics on dark columns. Log analog telemetry.

15. Drop functional processor to idle speed. Wait 1 second. Log analog telemetry.

The timeout period is overridden and set to 30 seconds for the duration of the self-test.

This gives the test time to complete before returning to idle mode.

If the self-test command is sent while the functional processor is running the first 5 steps

are skipped. The analog telemetry that would have normally been recorded for those steps

is replaced with NaN, indicating that the value is unknown.

8.3. Byte Order

All multi-byte values transported in the data field of NSP messages are in little-endian

format. That is, the least-significant byte is stored first, and the most-significant byte is

stored last.

8.4. Command Codes

Table 29: Command Codes

Command

Code

Command Mode

Bootloader Idle Processing Maintenance

/

Application

0x00 PING Supervisor Supervisor Supervisor Supervisor +

Functional

0x01 INIT Supervisor Supervisor Supervisor Supervisor +

Functional

0x02 PEEK Supervisor Supervisor Supervisor Supervisor +

Functional

0x03 POKE Supervisor Supervisor Supervisor Supervisor +

Functional

0x04 DIAGNOSTIC Supervisor Supervisor Supervisor Supervisor

0x05 STORE Supervisor

0x06 FLASH/CRC Supervisor Supervisor Supervisor Supervisor +

Functional

0x07 READ FILE Supervisor Supervisor Supervisor

0x08 WRITE FILE Supervisor Supervisor Supervisor

0x09 READ EDAC Supervisor Supervisor Supervisor

0x0A WRITE EDAC Supervisor Supervisor Supervisor

0x0B GO Supervisor Supervisor Supervisor

0x0C GATHER

RESULT

 Supervisor Supervisor Supervisor

0x0D READ RESULT Supervisor Supervisor Supervisor

0x0E –

0x0F

Reserved

0x10 IMAGE Functional

(Application

Only)

0x11 Reserved

0x12 COMBINATION Supervisor Supervisor Supervisor

0x13 READ TIME Supervisor Supervisor Supervisor

0x14 WRITE TIME

0x15 WRITE KEPS Supervisor Supervisor Supervisor

0x16 –

0x1F

Reserved

The table above shows the command codes that can be used by the host spacecraft to

communicate with the star tracker. It shows which of the star tracker processors will accept

each type of command in each mode. The functional processor will only accept host

commands in maintenance and application modes, and the supervisor processor supports

only a limited command set in bootloader mode.

In addition to the codes shown above, there are a number of private command codes used

by the star tracker’s two processors to communicate with each other. These are not

documented here.

8.5. PING (0x00)

The PING command is typically used during testing to verify communications. Incoming

data is ignored. The reply packet contains a human-readable text string containing:

• The type of device and the manufacturer

• The name, and compile time and date of the software that is currently running on

the target processor.

8.5.1. Command Format

Bytes 0 – N Zero or more bytes, ignored by the NSP module

8.5.2. Reply Format

Bytes 0 – N Human-readable ASCII string. No NULL termination.

8.6. INIT (0x01)

The INIT command is used to change the operating mode of a processor. In general, and

INIT with data is interpreted as an address to jump to. An init with no data is interpreted

as a reset or exit command. In all cases, if a reply has been requested (“Poll” bit set to ‘1’)

then the reply will be sent before the processor state is changed.

The supervisor will respond to an INIT with no data by completely resetting the device,

returning to bootloader mode. If it is in bootloader mode, it will respond to an INIT with

4 bytes of data by running an Application Module at the corresponding 32-bit start address.

By convention, devices will ship from the factory with the supervisor processor primary

application program stored at address 0x00002000. Thus, a command of INIT 0x00002000

will start the default behaviour.

If the functional processor is in application mode, it will respond to an INIT with no data

by exiting the Application Module and returning to its previous program. This is probably

its bootloader (maintenance mode). If one application module is called from a second, then

the INIT will return to the first application module.

The functional processor will respond to an INIT with 4 bytes of data by attempting to load

an Application Module from the corresponding 32-bit page address in NAND memory. If

the CRC of the module fails, NAK will be returned. Otherwise the module will be

executed. By convention, devices will ship from the factory with the functional processor

primary application program stored at address 0x0008000. Thus, a command of INIT

0x00008000 will start the default behaviour.

When using the INIT command to the functional processor in application mode, be sure

that the second application module is compatible with the first. If both use the same DRAM

resources, trouble will occur. Do not attempt to INIT to an Application Module that is

already running.

8.6.1. Command Format

Reboot command:

No payload bytes

Application start command:

Bytes 0 – 3 32-bit integer address of program to start

8.6.2. Reply Format

Reboot reply:

No payload bytes

Application start reply:

Bytes 0 – 3 32-bit integer address of program to be started

8.7. PEEK (0x02)

The PEEK command is used to read the device memory. Short and long formats of this

command are available for historical reasons. Short commands can be distinguished from

long commands by their lengths.

The supervisor processor has no restriction on the alignment or length of a peek. The

functional processor can perform only the following peeks:

• 1 byte length, to any address

• 2 byte length, to any even address

• 4N length, to any 32-bit aligned address

8.7.1. Short Command Format

Bytes 0 – 3 32-bit address to start peeking data

Byte 4 Number of bytes to read. A value of 0 indicates that 256 bytes

should be read.

8.7.2. Long Command Format

Bytes 0 – 3 32-bit address to start peeking data

Byte 4 - 5 Number of bytes to read.

8.7.3. Reply Format

Bytes 0 – 3 32-bit address of the start of data

Bytes 4 – N One or more bytes read from the target memory

8.8. POKE (0x03)

The POKE command is used to write the device memory. The supervisor processor will

not permit a POKE into flash memory when any Application Module is running. Each 512

byte block of supervisor processor flash memory has a lifetime of only 20,000 write cycles.

One cycle is consumed for each POKE command that accesses a particular block. This

lifetime is more than sufficient for occasional software patches, but the user is cautioned

that a looping sequence of POKE commands could easily wear out a block.

The supervisor processor has no restriction on the alignment or length of a poke. The

functional processor can perform only the following pokes:

• 1 byte length, to any address

• 2 byte length, to any even address

• 4N length, to any 32-bit aligned address

8.8.1. Command Format

Bytes 0 – 3 32-bit address to start poking data

Byte 4 – N 1 - 512 bytes to write to the target memory

8.8.2. Reply Format

Bytes 0 – 3 32-bit address where data write began

Bytes 4 – N 1 – 512 bytes written to the target memory

8.9. DIAGNOSTIC Command (0x04)

The DIAGNOSTIC command gathers error count data from the supervisor.

8.9.1. Command Format

Byte 0 Address of the diagnostic channel to read, as an 8-bit integer

8.9.2. Reply Format

Byte 0 Address of the diagnostic channel read, as an 8-bit integer

Bytes 1 - 4 Diagnostic value from the addressed channel, as a 32-bit integer

8.10. STORE Command (0x05)

The STORE command saves the supervisor processor parameter file to non-volatile

memory. It will only function in idle mode.

8.10.1. Command Format

Byte 0 0 to reset the stored parameter file to defaults

1 to store the current parameter file

8.10.2. Reply Format

Byte 0 0 if stored parameter file reset to defaults

1 if current parameter file stored

8.11. CRC Command (0x06) [Supervisor Processor Only]

Command 0x06 is interpreted by the supervisor processor as a CRC request. The CRC

command is used to calculate a checksum on an area of memory. Any of the memory

spaces may be addressed, and the calculation window may be as large as desired provided

that it does not contain any unimplemented memory.

The CRC uses the same 16-bit polynomial, with the same bit order, as is used for NSP

messages.

The CRC command can potentially be used to request the CRC of the supervisor

processor’s entire 128 kB flash memory. This can take a number of seconds, especially in

bootloader mode where the system clock is much slower.

 Command Format

Bytes 0 – 3 Address of the first byte to CRC as 32-bit integer

Bytes 4 – 7 Address of the last byte to CRC as 32-bit integer

 Reply Format

Bytes 0 – 3 Address of the first byte in CRC as 32-bit integer

Bytes 4 – 7 Address of the last byte in CRC as 32-bit integer

Bytes 8 – 9 CRC result as 16-bit integer

8.12. FLASH Command (0x06) [Functional Processor Only]

Command 0x06 is interpreted by the functional processor as a FLASH request. The first

byte of the data field is consulted to determine which subcommand is required.

Table 30: FLASH Subcommands

Subcommand Index Function

0 Read page buffer

1 Write page buffer

2 Erase NAND block

3 Write NAND page

4 Read NAND page

5 Count NAND errors

6 Find NAND bad blocks

7 CRC buffer

8 CRC NAND

9 CRC RAM

10 Make boot block

11 Make bit error

12 Copy NAND

13 NAND read disturbance test

14 Rewrite NAND

15 Read NAND page raw

16 Read NAND ID

17 Read NAND ONFI Parameters

18 Get NAND Features

19 Set NAND Features

20 Upgrade NAND ECC

21 Downgrade NAND ECC

22 Inspect NAND ECC

The NAND flash memory is divided into pages (2 kB each), and blocks (128 kB each). A

2 kB page buffer is maintained in RAM, and allows multiple NSP messages to interact

with individual pages. The NAND flash is protected by Error Correcting Codes (ECC)

which are generally invisible to the user. The codes can correct 1 bit error in a 512 byte

section.

NAND flash can be additionally protected using the backup feature, where a block is

assigned a second backup block to be used in case of failure.

8.12.1. Read Page Buffer

The Read Buffer subcommand reads the current contents of the page buffer. Note that this

command is of no use until another command has been used to put data into the page buffer.

The command is available in long and short variants.

 Short Command Format

Byte 0 Value 0, indicating Read Page Buffer subcommand

Bytes 1 – 2 16-bit offset within buffer to start reading

Byte 3 Number of bytes to read. 0 indicates 256 bytes should be read.

 Long Command Format

Byte 0 Value 0, indicating Read Page Buffer subcommand

Bytes 1 – 2 16-bit offset within buffer to start reading

Byte 3 - 4 Number of bytes to read.

 Reply Format

Byte 0 Value 0, indicating Read Page Buffer subcommand

Bytes 1 – 2 16-bit offset within buffer where reading started

Byte 3 - N Bytes read

8.12.2. Write Page Buffer

The Write Buffer subcommand writes into the page buffer. Note that the page buffer must

then be used by another command for this to be useful.

 Command Format

Byte 0 Value 1, indicating Write Page Buffer subcommand

Bytes 1 – 2 16-bit offset within buffer to start writing

Byte 3 - N Bytes to write

 Reply Format

Byte 0 Value 1, indicating Write Page Buffer subcommand

Bytes 1 – 2 16-bit offset within buffer where writing started

Byte 3 - N Bytes written

8.12.3. Erase NAND Block

This subcommand erases a block of NAND memory. The entire block is erased so that all

bytes read 0xFF.

 Command Format

Byte 0 Value 2, indicating Erase NAND Block subcommand

Bytes 1 – 4 32-bit number of a page within the target block

 Reply Format

Byte 0 Value 2, indicating Erase NAND Block subcommand

Bytes 1 – 4 32-bit number of a page within the target block

8.12.4. Write NAND Page

This subcommand copies the contents of the page buffer into the target NAND page. For

correct operation the page should have been previously erased.

 Command Format

Byte 0 Value 3, indicating Write NAND Page subcommand

Bytes 1 – 4 32-bit number of target page to write to

 Reply Format

Byte 0 Value 3, indicating Write NAND Page subcommand

Bytes 1 – 4 32-bit number of target page that was written.

8.12.5. Read NAND Page

This subcommand copies the contents of the target NAND page into the page buffer. It

will return NAK if there are uncorrectable ECC errors or if the page is in the erased

condition.

Even if NAK is returned the page buffer will have been updated. This allows some data to

be recovered from the page, even if there are errors.

 Command Format

Byte 0 Value 4, indicating Read NAND Page subcommand

Bytes 1 – 4 32-bit number of target page to read from

 Reply Format

Byte 0 Value 4, indicating Read NAND Page subcommand

Bytes 1 – 4 32-bit number of target page that was read.

8.12.6. Count NAND Errors

This subcommand examines a number of contiguous NAND pages for ECC errors. It

counts the number of pages that contain fixable errors, the number of pages that contain

uncorrectable ECC errors, the number of pages that require access to the backup, and the

number of erased pages.

 Command Format

Byte 0 Value 5, indicating Count NAND Errors subcommand

Bytes 1 – 4 32-bit number of the first page to examine

Bytes 5 - 8 32-bit number of the last page to examine

 Reply Format

Byte 0 Value 5, indicating Count NAND Errors subcommand

Bytes 1 – 4 32-bit number of the first page that was examined

Bytes 5 – 8 32-bit number of the last page that was examined

Bytes 9 – 12 32-bit number counting the number of pages with fixable ECC

errors

Bytes 13 – 16 32-bit number counting the number of pages with uncorrectable

ECC errors that cannot be corrected from the backup (either there is

no assigned backup, or the backup also has uncorrectable ECC

errors). Blocks tagged as bad are included here.

Bytes 17 – 20 32-bit number counting the number of pages where the primary has

uncorrectable ECC errors but the backup is readable

Bytes 21 – 24 32-bit number counting the number of pages that are in a

completely erased state

Each page is considered to belong to at most one of these categories.

8.12.7. Find NAND Bad Blocks

This subcommand examines a number of contiguous NAND pages for the factory bad

block flag.

 Command Format

Byte 0 Value 6, indicating Count NAND Errors subcommand

Bytes 1 – 4 32-bit number of the first page to examine

Bytes 5 - 8 32-bit number of the last page to examine

 Reply Format

Byte 0 Value 6, indicating Count NAND Errors subcommand

Bytes 1 – 4 32-bit number of the first page that was examined

Bytes 5 – 8 32-bit number of the last page that was examined

Bytes 9 – 12 32-bit number counting the number of pages with bad block flags

Bytes 13 – 16 32-bit number showing the page number of the first page with a bad

block flag. Zero is returned if no bad block flags were found.

8.12.8. CRC Buffer

This subcommand computes a 16-bit CRC of the page buffer.

 Command Format

Byte 0 Value 7, indicating CRC Buffer subcommand

 Reply Format

Byte 0 Value 7, indicating CRC Buffer subcommand

Bytes 1 – 2 16-bit CRC of page buffer.

8.12.9. CRC NAND

This subcommand computes a 16-bit CRC of a number of contiguous NAND pages. It

will return NAK if any of the pages contains uncorrectable ECC errors or if the page is in

the erased condition.

 Command Format

Byte 0 Value 8, indicating CRC Buffer subcommand

Bytes 1 – 4 32-bit number of the first page to CRC

Bytes 5 – 8 32-bit number of the last page to CRC

 Reply Format – Success

Byte 0 Value 8, indicating CRC Buffer subcommand

Bytes 1 – 4 32-bit number of the first page that was commanded CRCed

Bytes 5 - 8 32-bit number of the last page that was commanded CRCed

Bytes 9 - 10 16-bit CRC of NAND region

If successful, a 16-bit CRC result is returned with an ACK code.

 Reply Format – Failure due to ECC error

Byte 0 Value 8, indicating CRC Buffer subcommand

Bytes 1 – 4 32-bit number of the first page that was commanded CRCed

Bytes 5 - 8 32-bit number of the last page that was commanded CRCed

Bytes 9 - 12 32-bit number of the page where the error was located

If there is an uncorrectable ECC error, no CRC is returned. Instead, the page where the

error is located is returned. The CRC attempt stops on the first uncorrectable ECC error,

so it is possible that there are also additional errors in subsequent pages.

8.12.10. CRC RAM

This subcommand computes a 16-bit CRC of a region of RAM. [It is grouped with FLASH

commands for convenience only.] Be careful to specify correct addresses, as a data abort

emergency notification will be generated if unimplemented memory is read.

 Command Format

Byte 0 Value 9, indicating CRC RAM subcommand

Bytes 1 – 4 32-bit address of the first byte to CRC

Bytes 5 - 8 32-bit address of the last byte to CRC

 Reply Format

Byte 0 Value 9, indicating CRC RAM subcommand

Bytes 1 – 4 32-bit address of the first byte that was CRCed

Bytes 5 - 8 32-bit address of the last byte that was CRCed

Bytes 9 - 10 16-bit CRC of RAM region

8.12.11. Make Boot Block

This subcommand performs the following actions:

• Erases the NAND block containing the target page

• Copies 32 kB from SRAM to NAND memory, starting with the target page,

prepending the required Configuration Header data.

If the target page is 0, this writes the default boot block allowing the functional processor

to load its software from NAND in the future. Target pages of 64, 128 and 196 can be used

to write the backup boot bocks which are searched, in order, if the primary boot block

suffers an irrecoverable ECC error.

The command takes approximately 20 msec to execute, with the reply being sent once

execution is complete.

 Command Format

Byte 0 Value 10, indicating Make Boot Block subcommand

Bytes 1 – 4 32-bit number of target page to begin writing.

 Reply Format

Byte 0 Value 10, indicating Make Boot Block subcommand

Bytes 1 – 4 32-bit number of first page that was written.

8.12.12. Make Bit Error

This subcommand reads the entire block of NAND memory into an internal RAM buffer,

inverts one of the bits, erases the block, and reprograms it from the buffer. It has the effect

of flipping a single bit. The intent of this command is to test the ECC codes. Note that the

address used here is a physical address. The block relocation and backup tables have no

effect on this command.

The target bit number is encoded as follows:

Bits 0 – 3 (4 least significant bits) Number of target bit within a target 16-bit word.

0 corresponds to the LSB, and 15 to the MSB.

Bits 4 – 14 (11 bits) Number of target word within the target page. 0

– 1023 span the data range of the 2 kB page,

while 1024+ targets the extra ECC area.

Bits 15 – 31 (17 bits) Number of target page within the flash memory.

 Command Format

Byte 0 Value 11, indicating Make Bit Error subcommand

Bytes 1 – 4 32-bit number of target bit to flip

 Reply Format

Byte 0 Value 11, indicating Make Bit Error subcommand

Bytes 1 – 4 32-bit number of target bit to flip.

8.12.13. Copy NAND

This subcommand copies a number of contiguous pages of NAND memory from one

location to another. The target location is not automatically erased. However, the

subcommand will ensure that there is no good data (i.e. no pages with good ECC) in the

target area before beginning to write.

 Command Format

Byte 0 Value 12, indicating Copy NAND subcommand

Bytes 1 – 4 32-bit destination page number

Bytes 5 – 8 32-bit source page number

Bytes 9 – 12 32-bit number of pages to copy

 Reply Format

Byte 0 Value 12, indicating Copy NAND subcommand

Bytes 1 – 4 32-bit destination page number

Bytes 5 – 8 32-bit source page number

Bytes 9 – 12 32-bit number of pages to copy

8.12.14. NAND Read Disturbance Test

This subcommand repeatedly reads a number of contiguous pages of NAND memory and

checks the ECC. If no uncorrectable errors are found after the required number of cycles,

an ACK and a successful reply packet is returned. If an uncorrectable ECC error is found

the subcommand will stop and return an ECC failed reply packet with a NACK. A syntax

failed reply format packet will be immediately returned with a NACK if the command

parameters are out of range – for example, if the final page is before the start page. NACK

will also be returned if a large enough memory buffer could not be allocated. The largest

area that can be disturbance tested at one time is approximately 16 MB.

This command can take quite some time (roughly 1 second per 9000 pages read) to execute

if the read cycle time is large. It will emit a functional processor message (which will be

stored in the supervisor EDAC) after every 1000 read cycles. This can be polled to

determine the command progress.

To abort a read disturbance test, command the supervisor to reset the functional processor.

The functional processor itself is non-responsive while performing this test.

 Command Format

Byte 0 Value 13, indicating NAND Read Disturbance Test subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit maximum read cycle count

 Successful Reply Format

Byte 0 Value 13, indicating NAND Read Disturbance Test subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit number of read cycles completed

 Syntax Failed Reply Format

Byte 0 Value 13, indicating NAND Read Disturbance Test subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit maximum read cycle count

 ECC Failed Reply Format

Byte 0 Value 13, indicating NAND Read Disturbance Test subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit number of read cycles completed before failure

Bytes 13 – 16 32-bit number of page that failed ECC

8.12.15. Rewrite NAND

This subcommand reads blocks of NAND into RAM, erases the NAND, and reprograms

them from the RAM image. This will fix any correctable ECC errors and remove the

effects of cumulative read disturbance.

If a block has a backup then one of the two blocks will be fully erased and rewritten before

the other is erased. This should leave the NAND workable even if there is an unexpected

reset or power loss during the operation. The block that has the most errors is erased and

rewritten first.

The subcommand takes a start and end page number. The page numbers will be extended

on either end so that a whole number of blocks is accessed.

Pages that started in an erased state will not be reprogrammed. Blocks that start in an

erased state will not be re-erased.

The subcommand will fail if a block cannot be successfully read. If there is a backup, this

means that neither the primary nor secondary pass ECC. In this case it will abort before

erasing the block.

 Command Format

Byte 0 Value 14, indicating Rewrite NAND subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

 Successful Reply Format

Byte 0 Value 14, indicating Rewrite NAND subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

 Syntax Failed Reply Format

Byte 0 Value 14, indicating Rewrite NAND subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

 Operation Failed Reply Format

Byte 0 Value 14, indicating NAND Read Disturbance Test subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit page number of fault

8.12.16. Read NAND Page Raw

This subcommand reads a page from NAND into the page buffer. It is intended as a low-

level debugging operation, and differs from the regular Read NAND Page in the following

ways:

• The block relocation table is ignored, and the addressed physical page is read

• No attempt is made to use ECC to correct errors. Any bit errors in the page are

presented.

• Additional ECC information is appended to the end of the page buffer

• The command has no failure condition, and will always ACK

The page buffer format is:

Bytes 0 – 2047 2048 Data bytes from the NAND page

Bytes 2048 – 2111 64 Data bytes from the NAND page spare area

Bytes 2112 – 2127 16 bytes of the expected ECC registers, based on the spare area

Bytes 2128 – 2144 16 bytes of the actual ECC registers following the read

 Command Format

Byte 0 Value 15, indicating Read NAND Page Raw subcommand

Bytes 1 – 4 32-bit number of target page to read from

 Reply Format

Byte 0 Value 15, indicating Read NAND Page Raw subcommand

Bytes 1 – 4 32-bit number of target page that was read.

8.12.17. Read NAND ID

This subcommand reads the NAND device ID. This is a 40-bit code which describes

some of the basic parameters of the NAND IC.

 Command Format

Byte 0 Value 16, indicating Read NAND ID subcommand

 Reply Format

Byte 0 Value 16, indicating Read NAND ID subcommand

Bytes 1 – 5 40-bit ID code

8.12.18. Read NAND ONFI Parameters

This subcommand reads the NAND ONFI (Open NAND Flash Interface) parameters table

into the page buffer.

The page buffer format is:

Bytes 0 – 255 256 byte ONFI parameter table copy 1

Bytes 256 – 511 256 byte ONFI parameter table copy 2

Bytes 512 – 767 256 byte ONFI parameter table copy 3

 Command Format

Byte 0 Value 17, indicating Read NAND ONFI Parameters subcommand

 Reply Format

Byte 0 Value 17, indicating Read NAND ONFI Parameters subcommand

8.12.19. Get NAND Feature

This subcommand reads one of the 32-bit feature registers from the NAND IC.

Known feature registers are:

Address Feature Register

01h Timing Mode

80h Programmable I/O Drive Strength

81h Programmable R/B# Pull-Down Strength

90h Array Operation Mode

 Command Format

Byte 0 Value 18, indicating Get NAND Feature subcommand

Byte 1 8-bit address of the desired feature

 Reply Format

Byte 0 Value 18, indicating Get NAND Feature subcommand

Byte 1 8-bit address of the desired feature

Bytes 2 - 6 32-bit contents of feature register

8.12.20. Set NAND Feature

This subcommand writes one of the 32-bit feature registers in the NAND IC. Attempts to

write to feature register 0x90 will result in NAK. This is to prevent accidental interference

with the ECC and OTP functionality.

 Command Format

Byte 0 Value 19, indicating Set NAND Feature subcommand

Byte 1 8-bit address of the desired feature

Bytes 2 - 6 32-bit contents of feature register

 Reply Format

Byte 0 Value 19, indicating Set NAND Feature subcommand

Byte 1 8-bit address of the desired feature

Bytes 2 - 6 32-bit contents of feature register

8.12.21. Upgrade NAND ECC

This subcommand is used to change the error correcting codes in NAND blocks to 4-bit

from 1-bit. Not all hardware supports 4-bit ECC, and even on supported hardware the boot

blocks cannot be upgraded. Upgrades are performed on a block-by-block basis, and the

commanded page addresses will be expanded to include a whole number of blocks.

This subcommand addresses physical blocks, and is unaffected by reload or backup tables.

 Command Format

Byte 0 Value 20, indicating Upgrade NAND ECC subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

 Reply Format

Byte 0 Value 20, indicating Upgrade NAND ECC subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit number of blocks upgraded

Bytes 13 – 16 32-bit number of blocks untouched because they are already 4-bit

ECC

Bytes 17 – 20 32-bit number of blocks untouched because they are fully erased

Bytes 21 – 24 32-bit number of blocks untouched either because they cannot be

read (irrecoverable ECC errors) or they cannot be upgraded (ECC

hardware not present, or boot blocks)

8.12.22. Downgrade NAND ECC

This subcommand is used to change the error correcting codes in NAND blocks to 1-bit

from 4-bit. Not all hardware supports 4-bit ECC. Downgrades are performed on a block-

by-block basis, and the commanded page addresses will be expanded to include a whole

number of blocks.

This subcommand addresses physical blocks, and is unaffected by reload or backup tables.

 Command Format

Byte 0 Value 21, indicating Downgrade NAND ECC subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

 Reply Format

Byte 0 Value 21, indicating Downgrade NAND ECC subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit number of blocks downgraded

Bytes 13 – 16 32-bit number of blocks untouched because they are already 1-bit

ECC

Bytes 17 – 20 32-bit number of blocks untouched because they are fully erased

Bytes 21 – 24 32-bit number of blocks untouched because they cannot be read

(irrecoverable ECC errors)

8.12.23. Inspect NAND ECC

This subcommand is used to inspect a range of NAND memory, reporting on the type of

ECC used. It addresses physical blocks, and is unaffected by reload or backup tables.

 Command Format

Byte 0 Value 22, indicating Inspect NAND ECC subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

 Reply Format

Byte 0 Value 22, indicating Inspect NAND ECC subcommand

Bytes 1 – 4 32-bit start page number

Bytes 5 – 8 32-bit final page number

Bytes 9 – 12 32-bit number of blocks that read properly only with 1-bit ECC

Bytes 13 – 16 32-bit number of blocks that read properly only with 4-bit ECC

Bytes 17 – 20 32-bit number of blocks that read properly with both 1-bit and 4-bit

ECC (This should never happen)

Bytes 21 – 24 32-bit number of blocks that are entirely erased

Bytes 25 – 28 32-bit number of blocks that cannot be read with either ECC

8.13. READ FILE (0x07)

The Read File command returns one or more “files”, which are four consecutive bytes of

EDAC protected memory from the supervisor processor. The read process is atomic, so

that consistent data is always returned. This command is intended for back-compatibility

with other NSP devices with 32-bit floating-point file systems. There are three command

formats available: short, long and list. These return corresponding short, long and list

replies. These can be distinguished by their lengths.

8.13.1. Short Command Format

Byte 0 EDAC address divided by 4 (0 – 255)

8.13.2. Long Command Format

Bytes 0 - 1 EDAC address divided by 4 (0 – 65535)

8.13.3. List Command Format

Bytes 0 - 1 First EDAC address divided by 4 (0 – 65535)

Bytes 2 - 3 Second EDAC address divided by 4 (0 – 65535)

Bytes 4 - N Addresses for additional files, as desired

8.13.4. Short Reply Format

Byte 0 EDAC address divided by 4 (0 – 255)

Bytes 1 - 4 EDAC data bytes read from memory

8.13.5. Long Reply Format

Bytes 0 - 1 EDAC address divided by 4 (0 – 65535)

Bytes 2 - 5 EDAC data bytes read from memory

8.13.6. List Reply Format

Bytes 0 - 1 First EDAC address divided by 4 (0 – 65535)

Bytes 2 - 5 First EDAC data bytes read from memory

Bytes 6 - 7 Second EDAC address divided by 4 (0 – 65535)

Bytes 8 - 11 Second EDAC data bytes read from memory

Bytes 9 - N Addresses and data for additional files requested

8.14. WRITE FILE (0x08)

The Write File command writes one or more files, which are four consecutive bytes, to

EDAC memory. The write process is atomic, so that consistent data is always stored. This

command is intended for back-compatibility with other NSP devices with 32-bit floating-

point file systems. There are three command formats available: short, long and list. These

return corresponding short, long and list replies. These can be distinguished by their

lengths.

8.14.1. Short Command Format

Bytes 0 EDAC address divided by 4 (0 – 255)

Bytes 1 - 4 Data bytes to write to EDAC memory

8.14.2. Long Command Format

Bytes 0 – 1 EDAC address divided by 4 (0 – 65535)

Bytes 2 – 5 Data bytes to write to EDAC memory

8.14.3. List Command Format

Bytes 0 - 1 First EDAC address divided by 4 (0 – 65535)

Bytes 2 - 5 First EDAC data bytes to write to EDAC memory

Bytes 6 - 7 Second EDAC address divided by 4 (0 – 65535)

Bytes 8 - 11 Second EDAC data bytes to write to EDAC memory

Bytes 9 - N Addresses and data for additional files to write

8.14.4. Short Reply Format

Bytes 0 EDAC address divided by 4 (0 – 255)

Bytes 1 - 4 Data bytes that were written to EDAC memory

8.14.5. Long Reply Format

Bytes 0 – 1 EDAC address divided by 4 (0 – 65535)

Bytes 2 – 5 Data bytes that were written to EDAC memory

8.14.6. List Reply Format

Bytes 0 - 1 First EDAC address divided by 4 (0 – 65535)

Bytes 2 - 5 First EDAC data bytes written to memory

Bytes 6 - 7 Second EDAC address divided by 4 (0 – 65535)

Bytes 8 - 11 Second EDAC data bytes written to memory

Bytes 9 - N Addresses and data for additional files written

8.15. READ EDAC (0x09)

The Read EDAC command returns bytes from EDAC memory. The read process is atomic.

Long and short command formats are available.

8.15.1. Short Command Format

Bytes 0 – 1 EDAC address to start reading

Byte 2 Number of bytes to read. A value of 0 indicates that 256 bytes

should be read.

8.15.2. Long Command Format

Bytes 0 – 1 EDAC address to start reading

Bytes 2 - 3 Number of bytes to read.

8.15.3. Reply Format

Bytes 0 – 1 EDAC address where reading started

Bytes 2 – N The data bytes read from EDAC memory

8.16. WRITE EDAC (0x0A)

The Write EDAC command writes bytes into EDAC memory. The write process is atomic.

8.16.1. Command Format

Bytes 0 – 1 EDAC address to start writing

Bytes 2 – N Data bytes to write to EDAC memory

8.16.2. Reply Format

Bytes 0 – 1 EDAC address where writing started

Bytes 2 – N The data bytes written to EDAC memory

8.17. GO (0x0B)

The Go Code command starts (or terminates) a star tracker sequence. The code is a bitfield,

with the following contents:

Bit 0 (LSB) 0: Power off functional processor and detector immediately

1: Power on functional processor and detector immediately

Bit 1 0: Load functional processor software from supervisor flash

1: Load functional processor software from functional NAND flash

Bit 2 0: Power off functional processor and detector when functional

processor indicates done, or after timeout

1: Do not turn off functional processor and detector when done

Bit 3 0: Do not send a command to the functional processor

1: Load the compact control structure into the functional processor

Bit 4 0: Do not execute a built-in-test

1: Execute a built-in-test.

Bit 5 0: Reboot the functional processor and then load software into it

1: Keep the functional processor running with whatever software is

currently loaded. The timeout timer is reset.

Bits 6 – 7

(MSB)

Reserved for future use. Write as zero.

If bit 1 is set the functional processor will load its bootloader from NAND flash (blocks 0,

1, 2 or 3). It will then immediately attempt to load and execute an Application Module

image from block 0x8000, exactly as if it had received an INIT 0x00008000 command.

If bit 1 is clear the functional processor will load its bootloader from the supervisor flash.

This will take several seconds, and when complete the star tracker will be in maintenance

mode. Do not clear bit 1 when bit 3 or 4 is set.

Bit 5 is only valid when the sequence state is “running” or “completed”. If this is not the

case, the bit will be considered cleared regardless of its commanded state.

If bit 2 is clear, the functional processor will be powered down after a timeout, completion,

or an emergency terminate, whichever comes first.

If bit 2 is set but bit 5 is clear, the functional processor will be powered down by an

emergency terminate only.

If bit 2 and bit 5 are set, the functional processor will be powered down if timeout occurs

before completion. It will also be powered down by an emergency terminate. If it reaches

completion before timeout it will remained powered.

8.17.1. Command Format

Bytes 0 Go code to execute

8.17.2. Reply Format

Bytes 0 Go code that is being executed

8.18. GATHER RESULT (0x0C)

The Gather Result command is used to read a number of separate sections of the result

structure from the supervisor memory. All of the data requested must fit into a single

reply message.

8.18.1. Command Format

Bytes 0 – N List of gather command structures

 Gather Command Structure

Bytes 0 – 1 Result address to start reading

Bytes 2 – 3 Number of bytes to read

8.18.2. Result Format

Bytes 0 – N List of gather result structures

 Gather Result Structure

Bytes 0 – 1 Result address where reading started

Bytes 2 – 3 Number of bytes read

Bytes 4 – N Data bytes

8.19. READ RESULT (0x0D)

The Read Result command is used to read the result structure from the supervisor memory.

Short and long commands are available. If a single reply message would not be sufficient

to contain the data requested then several messages will be sent back-to-back. The PF bit

of the final message will be ‘1’, and all other messages have a PF bit of ‘0’.

8.19.1. Short Command Format

Bytes 0 - 1 Result address to start reading

Byte 2 Number of bytes to read. A value of 0 indicates that 256 bytes

should be read.

8.19.2. Long Command Format

Bytes 0 - 1 Result address to start reading

Byte 2 - 3 Number of bytes to read.

8.19.3. Reply Format

Bytes 0 - 1 Result address where reading started

Bytes 2 - N The data bytes read from result structure

8.20. IMAGE (0x10)

Command 0x10 is interpreted by the functional processor as an IMAGE request. This is

allowed only in application mode.

There are a number of different ways in which the image buffers may be manipulated. The

first byte of the data field is consulted to determine which subcommand is required.

Table 31: IMAGE Subcommands

Subcommand Index Function

0 Draw Rectangle

1 Rectangular Poke

2 Draw Ellipse

3 Blank Image Buffer

4 Sequenced Poke

5+ Reserved

8.20.1. Draw Rectangle Subcommand

This subcommand sets a rectangular window in a RAM image buffer to a constant

brightness state. The reply is simply an echo of the command. NACK is returned if any

of the parameters is out of range.

 Command Format

Byte 0 Value 0, indicating Draw Rectangle subcommand

Byte 1 Index of image buffer to write to

Bytes 2 – 3 Index of first row of the rectangle

Bytes 4 - 5 Index of first column of the rectangle

Bytes 6 – 7 Number of rows in the rectangle

Bytes 8 – 9 Number of columns in the rectangle

Bytes 10 – 11 Colour value 0

Bytes 12 – 13 Colour value 1

Bytes 14 – 15 Colour value 2

Bytes 16 – 17 Colour value 3

Bytes 18 – 19 Colour value 4

Bytes 20 – 21 Colour value 5

Bytes 22 – 23 Colour value 6

Bytes 24 – 25 Colour value 7

 Reply Format

Byte 0 Value 0, indicating Draw Rectangle subcommand

Byte 1 Index of image buffer to write to

Bytes 2 – 3 Index of first row of the rectangle

Bytes 4 - 5 Index of first column of the rectangle

Bytes 6 – 7 Number of rows in the rectangle

Bytes 8 – 9 Number of columns in the rectangle

Bytes 10 – 11 Colour value 0

Bytes 12 – 13 Colour value 1

Bytes 14 – 15 Colour value 2

Bytes 16 – 17 Colour value 3

Bytes 18 – 19 Colour value 4

Bytes 20 – 21 Colour value 5

Bytes 22 – 23 Colour value 6

Bytes 24 – 25 Colour value 7

8.20.2. Rectangular Poke Subcommand

This subcommand allows a rectangular window in a RAM image buffer to be filled in with

commanded pixel values. The number of pixels written must be a multiple of the number

of pixels in a window row. The number of columns in the window is automatically

determined from the number of pixels given. The pixel value written is summed with the

value already in the image buffer, and is saturated at 4095 as needed.

 Command Format

Byte 0 Value 1, indicating Rectangular Poke subcommand

Byte 1 Index of image buffer to write to

Bytes 2 – 3 Index of first row of the poke window

Bytes 4 - 5 Index of first column of the poke window

Bytes 6 – 7 Number of pixels in each row

Bytes 8 – 9 First pixel to write

Bytes 10 – 11 Second pixel to write

Bytes 11+ Subsequent pixel data

 Reply Format

Byte 0 Value 1, indicating Rectangular Poke subcommand

Byte 1 Index of image buffer to write to

Bytes 2 – 3 Index of first row of the poke window

Bytes 4 - 5 Index of first column of the poke window

Bytes 6 – 7 Number of pixels in each row

Bytes 8 – 9 First pixel to write

Bytes 10 – 11 Second pixel to write

Bytes 11+ Subsequent pixel data

8.20.3. Draw Ellipse Subcommand

This subcommand sets an elliptical window in a RAM image buffer to a constant brightness

state. The reply is simply an echo of the command. NACK is returned if any of the

parameters is out of range.

The ellipse is specified using a rectangular window. It is permitted to be partially clipped

by the edges of the imager.

 Command Format

Byte 0 Value 2, indicating Draw Ellipse subcommand

Byte 1 Index of image buffer to write to

Bytes 2 – 3 Index of first row of the rectangle

Bytes 4 - 5 Index of first column of the rectangle

Bytes 6 – 7 Number of rows in the rectangle

Bytes 8 – 9 Number of columns in the rectangle

Bytes 10 – 11 Colour value 0

Bytes 12 – 13 Colour value 1

Bytes 14 – 15 Colour value 2

Bytes 16 – 17 Colour value 3

Bytes 18 – 19 Colour value 4

Bytes 20 – 21 Colour value 5

Bytes 22 – 23 Colour value 6

Bytes 24 – 25 Colour value 7

 Reply Format

Byte 0 Value 2, indicating Draw Ellipse subcommand

Byte 1 Index of image buffer to write to

Bytes 2 – 3 Index of first row of the rectangle

Bytes 4 - 5 Index of first column of the rectangle

Bytes 6 – 7 Number of rows in the rectangle

Bytes 8 – 9 Number of columns in the rectangle

Bytes 10 – 11 Colour value 0

Bytes 12 – 13 Colour value 1

Bytes 14 – 15 Colour value 2

Bytes 16 – 17 Colour value 3

Bytes 18 – 19 Colour value 4

Bytes 20 – 21 Colour value 5

Bytes 22 – 23 Colour value 6

Bytes 24 – 25 Colour value 7

8.20.4. Blank Image Buffer Subcommand

This subcommand writes zero over every byte of an image buffer. The entire 16 MB region

is blanked, including the unused memory between lines.

 Command Format

Byte 0 Value 3, indicating Blank Image Buffer subcommand

Byte 1 Index of image buffer to write to

 Result Format

Byte 0 Value 3, indicating Blank Image Buffer subcommand

Byte 1 Index of image buffer written to

8.20.5. Sequenced Poke Subcommand

This subcommand is equivalent to the Rectangular Poke subcommand. However, it

introduces a sequence number. A sequence number is stored in the functional processor.

At turn-on it is set to zero. It is also zeroed by reception of any IMAGE command that is

not Sequenced Poke, even if that command is later NAKed due to out-of-range parameters.

The command should contain a new sequence number which is one greater than the stored

sequence number (looping back to 0 after 255). If this is the case, then the command will

be executed. Since the stored sequence number starts at zero, the first command issued

should have a sequence number of one.

If a command is received with a sequence number equal to the current sequence number

then it will be considered a duplicate of the previously received command. It will not be

executed, but will receive an ACK.

A command with any other sequence number will be NAKed.

A special short command can be issued as a “Sequence number enquiry”. The “Duplicate

reply” will be issued in response.

 Normal Command Format

Byte 0 Value 4, indicating Sequenced Poke subcommand

Byte 1 New sequence number

Byte 2 Index of image buffer to write to

Bytes 3 – 4 Index of first row of the poke window

Bytes 5 - 6 Index of first column of the poke window

Bytes 7 – 8 Number of pixels in each row

Bytes 9 – 10 First pixel to write

Bytes 11 – 12 Second pixel to write

Bytes 12+ Subsequent pixel data

 Sequence Number Enquiry Command Format

Byte 0 Value 4, indicating Sequenced Poke subcommand

 Executed Reply Format

Byte 0 Value 4, indicating Sequenced Poke subcommand

Byte 1 Current stored sequence number

Byte 2 Index of image buffer to write to

Bytes 3 – 4 Index of first row of the poke window

Bytes 5 - 6 Index of first column of the poke window

Bytes 7 – 8 Number of pixels in each row

Bytes 9 – 10 First pixel to write

Bytes 11 – 12 Second pixel to write

Bytes 12+ Subsequent pixel data

 Duplicate Reply Format

Byte 0 Value 4, indicating Sequenced Poke subcommand

Byte 1 Current stored sequence number

 Failed Reply Format

Byte 0 Value 4, indicating Sequenced Poke subcommand

Byte 1 Current stored sequence number

Bytes 2 – N Remainder of command, echoed back

8.21. COMBINATION (0x12)

The combination command may be used by resource constrained host spacecraft to start

the star tracker (equivalent to sending a GO command) and then receive result data

(equivalent to polling with READ RESULT commands).

Up to half a second may elapse between the command and its replies in normal mode. If a

self-test is commanded, tens of seconds may elapse. Be extremely careful using this

command if the star tracker shares the NSP bus with other devices.

Table 32: Combination Bitfield

Bit Result Offset Data Length Name

0 0x0000 0x0004 Sequence Number

1 0x0004 0x0004 Return Code

2 0x0008 0x0020 Attitude Quaternion

3 0x0028 0x0018 Angular Velocity

4 0x0040 0x0008 Epoch time

5 0x0048 0x0038 Hardware Telemetry

6 0x0080 0x00B0 Statistics Telemetry

7 0x0130 0x0310 Image Telemetry

8 0x0440 0x0068 ERS Telemetry

9 0x04A8 0x0340 Centroid Telemetry

10 0x07E8 0x0160 Match Telemetry

11 0x0000 0x02CC Built-in Test Result

Each bit in the bitfield causes a particular piece of data to be returned. Table 32 shows the

offset and length into the result structure referenced by each bit.

To run a built-in test, send a Go code consistent with a test, and a bitmap of 0x000800. For

normal operation, use a bitmap of 0x0007FF or less.

8.21.1. Command Format

Bytes 0 Go code to execute

Byte 1 - 3 Bitmap indicating desired telemetry return

8.21.2. Successful Reply Format

Bytes 0 - 1 Number of bytes already transmitted

Bytes 2 - N Result telemetry data

For a success, the ACK bit will be set to ‘1’. The number of reply messages generated

depends on the amount of data requested. The final message will have the PF bit set to ‘1’.

All other reply messages will have the PF bit set to ‘0’.

8.21.3. Failure Reply Format

Bytes 0 Sequence state

Bytes 1 - N Error message

If the functional processor stops before generating the full set of data required by the

COMBINATION command, a failure reply will be generated. The ACK bit will be set to

‘0’, to distinguish this from a successful reply.

The first byte of the return is the sequence state, as described in Table 37. The subsequent

bytes contain the error message. This may be the ASIC ID message, or the result of the

most recent warning or terminate message. If the error message would not fit into a single

NSP packet it is truncated. Only one failure reply message will be generated, and the PF

bit is set to ‘1’.

8.22. READ TIME (0x13)

The READ TIME command returns the supervisor’s realtime clock, latched at the moment

the final FEND character of the command is received. The data is returned as a 56-bit

unsigned integer count of microseconds since J2000. The least significant bit of the count

will always be zero, so the effective precision is 2 microseconds. The 56-bit count will roll

over in the year 4283, which is longer than the feasible lifetime of this software.

By sending several READ TIME commands, separated by minutes or hours, an accurate

comparison can be made between the star tracker clock and the spacecraft computer clock.

Rev 4 star tracker clocks are not particularly accurate, and may benefit from calibration.

At turn-on the clock is set to zero. It remains steady at zero until initialized by a WRITE

TIME command, at which point it begins to tick. Reading a zero result shows that the

clock has not yet been initialized.

8.22.1. Command Format

Bytes 0 – N Zero or more bytes, ignored by the NSP module

8.22.2. Reply Format

Bytes 0 – 6 56-bit unsigned integer, counting microseconds since J2000

8.23. WRITE TIME (0x14)

The WRITE TIME command sets the supervisor’s realtime clock. The data is latched at

the moment the final FEND character of the command is received, allowing the star tracker

clock to be accurately synchronized with the spacecraft clock.

Writing a time of exactly zero indicates that the star tracker should consider its realtime

clock invalid. In this state the clock will hold at exactly zero until a subsequent WRITE

TIME command is received.

8.23.1. Command Format

Bytes 0 – 6 56-bit unsigned integer, counting microseconds since J2000

8.23.2. Reply Format

Bytes 0 – 6 56-bit unsigned integer, counting microseconds since J2000

8.24. WRITE KEPS (0x15)

The WRITE KEPS command allows the user to upload a set of osculating Keplerian

elements that describe the host spacecraft’s orbit about the Earth.

There are various ways to describe Keplerian elements. The set here is chosen for reasons

of computation efficiency, and because they can be easily obtained from TLEs.

The time of perigee passage must be in the past (i.e. less than the current time) and must

occur after J2000. It should be recent (within the past few days) or numerical

approximations will result in poor accuracy.

8.24.1. Command Format

Bytes 0 – 3 32-bit IEEE 754 float, Orbit eccentricity. [0.0 <= e < 1.0]

Bytes 4 – 7 32-bit IEEE 754 float, Orbit inclination, rads

Bytes 8 – 11 32-bit IEEE 754 float, Right ascension of the ascending node, rads

Bytes 12 – 15 32-bit IEEE 754 float, Argument of perigee, rads

Bytes 16 – 19 32-bit IEEE 754 float, Mean motion, rads/sec

Bytes 20 – 26 56-bit unsigned integer, Time of perigee passage, microseconds since

J2000

8.24.2. Reply Format

Bytes 0 – 3 32-bit IEEE 754 float, Orbit eccentricity. [0.0 <= e < 1.0]

Bytes 4 – 7 32-bit IEEE 754 float, Orbit inclination, rads

Bytes 8 – 11 32-bit IEEE 754 float, Right ascension of the ascending node, rads

Bytes 12 – 15 32-bit IEEE 754 float, Argument of perigee, rads

Bytes 16 – 19 32-bit IEEE 754 float, Mean motion, rads/sec

Bytes 20 – 26 56-bit unsigned integer, Time of perigee passage, microseconds since

J2000

9. Protocol Layer 6 (Presentation Layer)

9.1. Supervisor Mapping

9.1.1. Memory Map

Table 33: Supervisor Memory Map

Address Range Function

0x00000000 – 0x000015FF Bootloader program memory

0x00001600 – 0x00002FFF Supervisor program memory (flash)

0x00003000 – 0x00003047 Default control structure (flash)

0x00003048 – 0x00007DFF Supervisor program memory (flash)

0x00007E00 – 0x00007FFF Stored parameters (flash)

0x00008000 – 0x0000FFFF Unused (flash)

0x00010000 – 0x0001F9FF Functional processor bootloader image (flash)

0x0001FA00 – 0x0001FBFF Bootloader program memory

0x01000000 – 0x010000FF 256 B IRAM (RAM)

0x02000000 – 0x02001FFF 8 kB XRAM (RAM)

0x03000080 – 0x030000FF 128 B SFR (RAM) Bank 00h

0x030C0080 – 0x030C00FF 128 B SFR (RAM) Bank 0Ch

0x030F0080 – 0x030F00FF 128 B SFR (RAM) Bank 0Fh

0x03100080 – 0x031000FF 128 B SFR (RAM) Bank 10h

0x04000900 – 0x0400090F Power supply SMBus mapped registers

0x04004A00 – 0x04004A03 Detector temperature sensor SMBus mapped registers

0x04005D00 – 0x04005DFF Active pixel detector SMBus mapped registers

The supervisor memory can be directly accessed with PEEK and POKE commands, and

CRCs calculated with CRC commands. It is represented as a single 32-bit memory space,

sparsely populated.

The first 5.5 kB of program memory contain the bootloader. These are protected against

POKEs so that the bootloader cannot be accidentally changed. The next 58.5 kB contains

the supervisor application program. A sequence of POKE commands in bootloader mode

can be used to load new application programs.

The bootloader memory cannot be read by the application program, and so PEEK or CRC

commands to those regions will fail if not in bootloader mode.

Starting at address 0x00010000 is a 56 kB bootloader image for the functional processor.

The first four bytes indicate the length of the program, and the first actual program byte

lives at address 0x00001004. When a GO command is received to boot the functional

processor from supervisor flash, the byte from 0x00001004 on the supervisor is loaded into

byte 0x40200000 of the functional processor. Successive bytes from the supervisor are

loaded into successive locations in the functional processor. When all of the bytes

(indicated by the length field at the start) have been loaded the functional processor begins

execution at address 0x40200000.

The supervisor processor has two RAM areas. There is little need for a user to touch these.

There are four banks of Special Function Registers (SFRs). These should not be POKEd

without knowing exactly what is going on. Even PEEKing some of these registers can

have unexpected side effects.

The SMBus mapped registers are similarly only to be used by those who know what they

are doing. There is no interlock preventing the supervisor from trying to access the SMBus

at the same time as the functional processor, potentially leading to corruption for both units.

9.1.2. Diagnostics

Table 34: Diagnostic Channels

Diagnostic Channel Function

0x00 Reset Reason

0x01 Reset Count

0x02 Internal Framing Error Count

0x03 Internal Runt Packet Count

0x04 Internal Oversize Packet Count

0x05 Internal Bad CRC Count

0x06 Internal FIFO Overflow Count

0x07 External Framing Error Count

0x08 External Runt Packet Count

0x09 External Oversize Packet Count

0x0A External Bad CRC Count

0x0B External FIFO Overflow Count

Each diagnostic channel is presented as a 32-bit unsigned integer. The internal storage for

many of these is only 16 bits, so overflows may occur after 64k counts.

Internal errors represent bad NSP events on the communications link between the

supervisor and functional processors. External errors represent bad NSP events on the

communication link between the supervisor and the host spacecraft. Reset will clear all of

the error counters.

 Reset Reason

The reset reason is an enumerated type, describing the reason for the most recent reset of

the supervisor processor.

Table 35: Reset Reason Codes

Reset Reason

Code

Meaning

0
Power cycle. The star tracker has either been freshly turned on, or the

input voltage has dropped below approximately 2 V.

1
Flash error. An illegal attempt has been made to read or write flash

memory.

2

Overcurrent. The star tracker input current has momentarily exceeded

the 750 mA maximum threshold, and the supervisor processor has

been reset in an attempt to clear the fault.

3

Watchdog reset. The default application program does not use the

watchdog timer, but if it somehow does get turned on this is the reset

that it would generate.

4

Missing clock. The internal oscillator has failed momentarily.

Obviously if you are reading this code then the oscillator must have

restarted.

5 Pin reset. The external /Reset signal has been pulled low.

6

Software reset. The most likely cause is that an INIT command has

been received with no data, forcing a reset. This could also be caused

if the supervisor software encounters an irrecoverable fault, such as a

spurious interrupt.

 Reset Count

The reset count contains the number of supervisor processor resets since the last power

cycle reset. Immediately after a power cycle the reset count will read as 0. After the first

non-power-cycle reset it will read 1.

 Framing Error Count

A framing error is declared if an NSP message is incorrectly encapsulated on the

communications link. For ASYNC and RS485 links, this would be any time a FESC

character is seen that is not immediately followed by TFESC or TFEND. CAN framing

errors are TBD.

 Runt Packet Count

A runt packet is a NSP message that is less than 5 bytes long. Such a fragment cannot be

a properly formed NSP message since it cannot contain a source and destination address,

control field, and CRC.

Runts are counted only if the first byte is equal to the star tracker’s address, which would

normally indicate that the packet is addressed to this unit. A zero-length NSP message is

not considered a runt. For example, on an ASYNC or RS485 link two FEND characters

back-to-back is a valid bus condition and not a runt.

 Oversize Packet Count

An oversize packet is one that has too many bytes in the data field. Packets that are too

long cannot fit into the allocated message buffers and so they must be rejected. See section

7.2 for the length constraints.

 Bad CRC Count

This count is incremented every time a properly formatted (in length and framing) NSP

message is received where the CRC field does not match with the computed CRC, and

where the first byte is equal to the NSP address of the star tracker.

 FIFO Overflow Count

The bootloader does not use FIFO buffers, and will never increment this counter.

The application program uses a mix of hardware and software FIFO buffers on its serial

inputs. If a FIFO overflows and loses data then this counter will increment. Due to the

constraints of the hardware it is not guaranteed that all overflow events will be noticed.

9.1.3. EDAC Memory

The supervisor processor supports 512 bytes of EDAC protected memory. These are

implemented using software-based triple-redundant storage into conventional SRAM cells.

EDAC memory can be read with READ EDAC and READ FILE commands, and written

with WRITE EDAC and WRITE FILE commands. The STORE command will save

EDAC memory into non-volatile flash memory.

Table 36: Supervisor EDAC Memory Map

EDAC

Address

File

Address

Function Format

0x00 – 0x01 N/A Flash table CRC 16-bit unsigned integer

0x02 N/A EDAC load source 8-bit unsigned integer

0x03 N/A Reserved

0x04 – 0x07 0x01 Asynchronous current sense telemetry 32-bit float, Amps

0x08 – 0x0B 0x02 Asynchronous bus voltage telemetry 32-bit float, volts

0x0C – 0x0F 0x03 Asynchronous Vdd Core telemetry 32-bit float, volts

0x10 – 0x13 0x04 Asynchronous Vdd MPU telemetry 32-bit float, volts

0x14 – 0x17 0x05 Asynchronous Vdd IO telemetry 32-bit float, volts

0x18 – 0x1B 0x06 Asynchronous supervisor temperature

telemetry
32-bit float, C

0x1C – 0x1F 0x07 Asynchronous Vdd supervisor telemetry 32-bit float, volts

0x20 – 0x23 0x08 Asynchronous ADC ground telemetry (Rev4)

Asynchronous Vdd detector telemetry (Rev5)

32-bit float, volts

0x24 – 0x27 0x09 Synchronous current sense telemetry 32-bit float, Amps

0x28 – 0x2B 0x0A Synchronous bus voltage telemetry 32-bit float, volts

0x2C – 0x2F 0x0B Synchronous Vdd Core telemetry 32-bit float, volts

0x30 – 0x33 0x0C Synchronous Vdd MPU telemetry 32-bit float, volts

0x34 – 0x37 0x0D Synchronous Vdd IO telemetry 32-bit float, volts

0x38 – 0x3B 0x0E Synchronous supervisor temperature telemetry 32-bit float, C

0x3C – 0x3F 0x0F Synchronous Vdd supervisor telemetry 32-bit float, volts

0x40 – 0x43 0x10 Synchronous ADC ground telemetry (Rev4)

Synchronous Vdd detector telemetry (Rev5)

32-bit float, volts

0x44 – 0x47 0x11 SEU count 32-bit unsigned integer

0x48 – 0x4B 0x12 SEU scrub index 32-bit unsigned integer

0x4C – 0x4F 0x13 Result structure length 32-bit signed integer

0x50 – 0x53 0x14 Control structure length 32-bit unsigned integer

0x54 – 0x57 0x15 Timeout period 32-bit float, seconds

0x58 – 0x5B 0x16 Sample point 32-bit float, seconds

0x5C N/A Sequence state 8-bit enum

0x5D N/A Functional processor message length 8-bit unsigned integer

0x5E – 0x97 N/A Functional processor message Sequence of 8-bit

characters. May be

human-readable.

0x98 –

0x18F

0x26-

0x63

Control structure

0x190 –

0x193

0x64 Uptime (low precision, for convenience) 32-bit float, Julian days

since supervisor boot

0x194 N/A Unused

0x195 –

0x19B

N/A Time offset 56-bit unsigned

integer, recording

offset between realtime

clock and uptime clock

in microseconds

0x19C N/A Vdd IO tune 8-bit unsigned integer

0x19D N/A Vdd detector tune 8-bit unsigned integer

0x19E N/A Detector config 8-bit bitfield

0x19F N/A Unused

0x1A0 –

0x1A3

0x68 Thermistor temperature (in star trackers built

after Jan 2021, thermistor is not populated.

Value will always read 0xffffffff).

32-bit float, C

0x1A4 –

0x1AA

N/A Time of last GO command 56-bit unsigned

integer, counting in

units of microseconds

of uptime

0x1AB N/A Previous epoch override 8-bit Boolean. Non-

zero values prevent

automatic write of

control structure epoch

of previous return.

0x1AC –

0x1DB

0x6B –

0x76

Reserved area written by WRITE KEPS Reserved

0x1DC –

0x1E7

0x77 –

0x79

Satellite velocity about the Earth Array of three 32-bit

floats, meters/second

0x1E8 –

0x1F3

0x7A-

0x7C

Earth velocity about the sun Array of three 32-bit

floats, meters/second

0x1F4 –

0x1F7

0x7D Time (low precision, for convenience) 32-bit float, Julian days

since J2000.0

0x1FA N/A Ephemeris control 8-bit bitmap

0x1FB - 1FF N/A Realtime clock

40-bit unsigned

integer, counting in

units of 0.065536 sec,

since J2000.0

 EDAC Load Source

Upon entry to the supervisor application program, the supervisor flash memory is checked

for a valid EDAC table. If such a table is found it will be loaded. The EDAC Load Source

byte will be set to ‘1’.

Otherwise, the EDAC Load Source byte will be set to ‘0’, and factory default values will

be loaded into the EDAC table.

The STORE command can be used to create or delete the flash memory table.

 Asynchronous Analog Telemetry

Asynchronous telemetry is continually recorded using the ADC in the supervisor

processor. Reads to these files show the most recently collected values. The current and

voltage telemetry points are quite accurate. The supervisor temperature telemetry point is

based on a junction integrated with the silicon die and is not well calibrated. It can be used

for a general indication of hot or cold, but should not be relied on as an absolute measure

of temperature.

 Synchronous Analog Telemetry

Synchronous telemetry is recorded in a single snapshot at a time after the functional

processor startup as defined by the Sample point file. If the star tracker is in regular cyclic

operation, this can be used as an apples-to-apples comparison to look at trends in voltages,

currents and temperatures.

 SEU Count

Each byte of the EDAC memory is stored in three SRAM cells, and triple-voting is used

whenever one is retrieved. As a background task the EDAC memory is scrubbed for errors.

Every time an error is found and fixed the SEU Count is incremented.

 SEU Scrub Index

The SEU Scrub Index contains the pointer to the current location to be scrubbed. This

counter is frequently incremented until it reaches the end of the EDAC space and loops

back to zero. It is of little interest to the user.

 Result Structure Length

The functional processor sends telemetry results to the supervisor processor. The result

structure return is not atomic, so the result structure length file will slowly grow as

individual result packets are received by the supervisor processor. The result structure

length file will be zeroed immediately after a GO command, deleting the results from the

previous cycle and making room for a fresh result structure.

The result structure length file will be set to -1 if out-of-order result packets are received

from the functional processor.

 Control Structure Length

A control structure is held in EDAC memory, and is sent to the functional processor on

each GO command. The Control structure length file determines how many bytes are sent

to the functional processor. It is critically important that this number match the number of

bytes that the functional processor is expecting. The functional processor will not operate

if there is a mismatch.

 Timeout Period

The timeout period determines how long the functional processor should be allowed to run

before it is turned off. This is ignored if the GO command stated that the functional

processor should be allowed to run indefinitely. If the built-in-test is run then the timeout

period file is not used, and a value of 30 seconds is specified instead.

 Sample Point

The sample point determines when the synchronous telemetry snapshot should be taken.

It is measured in seconds after the moment that the /Reset signal on the functional processor

is de-asserted. Note that if the sample point value is too long (i.e. longer than the timeout

period) the synchronous telemetry may not be sampled.

 Sequence State

The sequence state shows the power state of the functional processor.

Table 37: Sequence States

Sequence

State

Meaning

0x00 The main power switch has been turned ON

0x01 The DC/DC converter running the 1.8 V I/O rail has been started

0x02 The LDO running the 2.8 V detector power supply has been started

0x03 The DC/DC converter running the core Vdd rail has been started

0x04 The DC/DC converter running the MPU Vdd rail has been started

0x05 The functional processor’s /Reset line has been released

0x06 The functional processor’s ASIC ID message is being received

0x07 The supervisor is commanding the functional processor’s boot mode

0x08 The supervisor is loading the functional processor with a program from its

flash memory

0x09 The functional processor is booting

0x0A The functional processor has sent a message indicating that its software is

running

0x0B The functional processor has been turned off by GO command. This is

also the default state upon starting the supervisor processor.

0x0C The functional processor has been turned off after it has reported

successful completion.

0x0D The functional processor has been turned off following a timeout waiting

for the ASIC ID message.

0x0E The functional processor has been turned off following a timeout while

commanding the boot mode.

0x0F The functional processor has been turned off following a timeout while

sending the program.

0x10 The functional processor has been turned off following a timeout while

waiting for it to indicate that its software is running.

0x11 The functional processor has been turned off following a timeout while

running normally.

0x12 The functional processor has been turned off because the input voltage to

the star tracker exceeded the safe limit (Rev 4).

OR

The functional processor has been turned off because the supervisor failed

in an attempt to write on the SMBus (Rev 5).

0x13 The functional processor has been turned off because it emitted an

emergency terminate message.

0x14 The supervisor processor Vdd regulator has entered low-voltage dropout

(at about 2.3 V). The sequencer has been reset so that excessive currents

are not drawn at low supply voltages.

0x15 The supervisor processor has detected a parity error in the boot message

received from the functional processor. The functional processor has been

turned off.

0x16 The supervisor processor UART which connects to the functional

processor has experienced a FIFO overflow during the boot process. The

functional processor has been turned off.

Note that overflows subsequent to the boot process are handled by the

diagnostic counters instead.

0x17 The supervisor processor has detected serial data from the functional

processor when it was not expected in the boot process. The functional

processor has been turned off.

0x18 The supervisor processor has detected a serial transmit interrupt when it

did not think it was trying to transmit. The functional processor has been

turned off in the ensuing confusion.

 Functional Processor Message

The functional processor can send notification messages to be stored in the EDAC memory.

Only one message can be stored at a time, and a newer message replaces an older one. The

length of the currently stored message is stored in EDAC, followed by the message itself.

The Rev 4 star tracker captures the functional processor ASIC ID sequence, which is a 58

byte structure identifying the chip. This will be used as the first functional processor

message. The Rev 5 hardware lacks the ability to read the ASIC ID.

At certain points in the functional program it may send debugging notifications. These are

human-readable ASCII strings. They are not NULL terminated, since the message length

is stored separately. If the functional processor encounters a serious error it will send an

emergency terminate message. This message will be stored in EDAC, and receipt of it will

also cause the supervisor to immediately power down the functional processor. Emergency

terminate messages are human-readable ASCII.

 Vdd IO Tune

By setting this byte to a non-zero value, the voltage on the Vdd IO rail can be reduced from

its +1.8 V nominal value. Each step reduces it by 3%. Values of 0 and 1 keep all

components within specified ranges. Anecdotal testing suggests that the star tracker may

keep working with values of up to 7. 15 is the largest acceptable value.

Increasing this value reduces the power consumption and heat generation of the star

tracker. It does not appear to have a significant effect on detector noise levels.

This functionality is only available on the Rev 5 hardware.

 Vdd Detector Tune

By setting this byte to a non-zero value, the voltage on the Vdd detector rail can be reduced

from its +2.8 V nominal value. Each step reduces it by 3%. Values of 0 to 2 keep all

components within specified ranges. Anecdotal testing suggests that the star tracker may

keep working with values of up to 15. 15 is the largest acceptable value.

Increasing this value slightly reduces the power consumption and heat generation of the

star tracker. It does not appear to have a significant effect on detector noise levels.

This functionality is only available on the Rev 5 hardware.

Analog offsets should be recomputed when this setting is changed.

 Detector Config

By setting this byte to a non-zero value, the detector can be configured in non-default

ways. This functionality is only available on the Rev 5 hardware.

Bit Meaning

0 (LSB) Pixel clock slew rate.

0 = Fast (default)

1 = Slow

1 Pixel data slew rate.

0 = Fast (default)

1 = Slow

2 Pixel clock rate

0 = 86 MHz (default)

1 = 84 MHz (do not use!)

3 ADC gain

0 = x15.75 (default)

1 = x8 (Doubles dynamic range, slight

increase in noise)

 Thermistor Temperature

If the star tracker is fitted with a chassis thermistor, this telemetry gives a calibrated

measurement in °C. The measurement is asynchronous to the GO cycle.

 Time of Last GO Command

This file stores the time of the last GO command, assuming the clock has been correctly

set. Only relatively low precision data is available in EDAC memory. An internal higher

precision structure is used for epoch feedback.

 Previous Epoch Override

When this byte is zero the previous epoch field in the control structure will be automatically

updated to tell the functional processor the time of the previous solution relative to its own

clock. If it is non-zero then this update will not occur, and the user can force the previous

epoch field to any value. This is useful in HITL testing. It should be zero for flight

operations.

 Satellite Velocity about the Earth

These three files contain the velocity of the satellite with respect to the Earth, in the ECI

frame. Depending on the ephemeris control byte they may be set by the user or automatic.

These files can be read to test the function of the ephemeris.

 Earth Velocity about the Sun

These three files contain the velocity of the Earth with respect to the sun, in the ECI frame.

Depending on the ephemeris control byte they may be set by the user or automatic. These

files can be read to test the function of the ephemeris.

 Time

This file contains the time as a 32-bit floating point value. Its precision is not very good –

by 2014 it has a granularity approaching 30 seconds. It is provided for convenience only.

 Ephemeris Control

The star tracker has the ability to correct star positions for stellar aberration. It does this

through the spacecraft velocity field of the control structure. The data in the velocity field

is controlled by the Ephemeris control in EDAC memory.

Table 38: Ephemeris Control

Bits Function

0 – 1 (LSB) 0: Earth ephemeris disabled. Earth velocity files can be set by user.

1: Earth ephemeris runs. Earth velocity files automatically updated. If

time is zero, Earth velocity files are held at zero.

2+: Earth ephemeris disabled. Earth velocity files are held at zero.

2 – 3 0: Satellite ephemeris disabled. Satellite velocity files can be set by user.

1: Satellite ephemeris runs. Satellite velocity files automatically

updated. If time is zero, satellite velocity files are held at zero.

2+: Satellite ephemeris disabled. Satellite velocity files are held at zero.

4 – 6 0: Control spacecraft velocity fields can be set by user.

1: Control spacecraft velocity fields are set by Earth velocity files.

2: Control spacecraft velocity fields are set by Satellite velocity files.

3: Control spacecraft velocity fields are set by sum of Earth velocity files

and Satellite velocity files.

4+: Control spacecraft velocity fields are held at zero

7 (MSB) Reserved

9.1.4. Result Structure

Received result data from the functional processor is stored in the result structure. It can

be read using the READ RESULT command. Before reading it is a good idea to read the

result structure length from EDAC memory. READ RESULT will return NACK if an

attempt is made to read beyond the valid areas of the result structure.

The format of the result depends on whether the star tracker is being used operationally, or

in self-test. In both cases, the structure is made up of sub-structures

 Operational Result

Table 39: Operational Result Structure

Result

address

Type Notes

0x0000 Unsigned 32-bit integer Sequence number

0x0004 Unsigned 32-bit integer Return code

0x0008 Array of 4 64-bit IEEE floating-point

values

Inertial attitude quaternion.

Scalar component first.

0x0028 Array of 3 64-bit IEEE floating-point

values

Angular velocity of sensor

wrt ECI in sensor frame

0x0040 64-bit IEEE floating-point value Epoch time

0x0048 Hardware Telemetry

0x0080 Statistics Telemetry

0x012C Unsigned 32-bit integer Reserved

0x0130 Array of 2 Image Telemetry structures

0x0440 ERS Telemetry

0x04A8 Array of 2 Centroid Telemetry structures

0x07E8 Array of 2 Matching Telemetry structures

0x0948 Reserved

The entire operational result structure is 0x0A38 bytes long.

 Self-Test Result

Table 40: Self-Test Result Structure

Offset Type Notes

0x0000 Analog Frame From step 1 in 8.2

0x0020 Analog Frame From step 2 in 8.2

0x0040 Analog Frame From step 3 in 8.2

0x0060 Analog Frame From step 4 in 8.2

0x0080 Analog Frame From step 5 in 8.2

0x00A0 Analog Frame From step 6 in 8.2

0x00C0 Analog Frame From step 7 in 8.2

0x00E0 Analog Frame From step 8 in 8.2

0x0100 Analog Frame From step 9 in 8.2

0x0120 Analog Frame From step 10 in 8.2

0x0140 Analog Frame From step 11 in 8.2

0x0160 Signed 32-bit int 0 if first test pattern image

matches expected value,

negative otherwise

0x0164 Signed 32-bit int 0 if second test pattern

image matches first image,

negative otherwise

0x0168 Analog Frame From step 12 in 8.2

0x0188 Hardware Telemetry

0x01C0 Analog Frame From step 13 in 8.2

0x01E0 Statistics Telemetry

0x028C Analog Frame From step 14 in 8.2

0x02AC Analog Frame From step 15 in 8.2

The complete self-test structure is 0x02CC bytes long. It is possible that the self-test will

fail somewhere along the sequence. For example, if the detector is not working the

sequence may stall waiting for an image. In this case the structure will be shorter, and the

location of the stall may be determined by the missing data. The Combination command

will not deal gracefully with a test failure.

 Return Code

The return code is a bitfield that allows the success of the operation to be determined at a

glance. New in this revision is a revised set of return codes that clarify interpretation of the

sensor status for the end user. The original codes are still set, but are labeled ‘Legacy’

codes.

Table 41: Return Code

Bit Meaning Status

Bit 0 Image 1 output quality Legacy

Bit 1 Image 2 output quality Legacy

Bit 2 Image 1 processing success Legacy

Bit 3 Image 2 processing success Legacy

Bit 4 Full processing Legacy

Bit 5 Detector image Legacy

Bit 6 Consistent image solutions Legacy

Bit 7 Reserved

Bit 8 Master Return Master Return

Bits 9-10 Image 1 Status Advanced

Bits 11-12 Image 2 Status Advanced

Bit 13 Rate Source Advanced

Bit 14 Solution 1 consistent with previous Advanced

Bit 15 Solution 2 consistent with previous Advanced

Master Return

The Master Return bit is an overall indicator of the sensor’s confidence in its result.

Generally, when this bit is set, the sensor is confident in its return. If this bit is not set, the

quaternion and omega fields in the primary telemetry will be zeroed and should not be

used.

Advanced Status Return

When the Master Return bit is not set, users may find useful attitude information by

consulting the extended telemetry. However, care must be taken to assess the

reasonableness of any such estimates. Interpreting these results relies on understanding the

sensor’s evaluation of each image.

Each image’s result is assigned a quality label of BAD (00), MARGINAL (01), or GOOD

(10). A good result has at least four matched stars, or a three matched star solution that is

consistent between images. For the Master Return bit to be set, the sensor requires at least

one GOOD image, as well as error-free execution.

During ground-testing we have observed a rare condition where atmospheric scintillation

causes a failure of the rolling shutter processing. Thus, one of both images may be marked

as good, yet the Master Return is not set. This condition should be very rare on-orbit.

In the case of a marginal processing result, the image-specific quaternions found in the

extended telemetry may be useful if external attitude estimates are available for cross-

checking. When even degree-accurate estimates are available, it is usually fairly easy to

assess the quality of marginal returns. When in doubt, we recommend that marginal returns

be treated as ‘bad’.

Legacy Return

This section documents the original set of status messages. In general a ‘1’ result is good,

while a ‘0’ result should be cause for caution before using the attitude and rate data.

• Bits 4 and 5 are mainly diagnostic. These indicate that images were taken by the

detector, and the processing completed without aborting.

• Bits 2 and 3 indicate that a match was found for at least three stars in the corresponding

image. Attitude estimates are available.

• Bits 0 and 1 indicate greater confidence in the returned attitude solution. When the

success bit is ‘1’, but this bit is ‘0’, the algorithm was unable to match several stars

detected in the image. This bit will never be ‘1’ if the corresponding success bit is ‘0’.

As of Rev. 1.13, all returns require a minimum of four matched stars for the quality bits

to be set.

• Bit-6 indicates that the attitude solutions for the two images agree to within 0.6 degrees

(this limit based on maximum supported satellite rates). This allows greater confidence

in the return.

Rate Source is set if the output rate is based on the difference between the quaternion this

frame, and last frame’s quaternion. Rate source is clear if the output rate is based on the

difference between the two images in this frame.

 Hardware Telemetry Structure

Table 42: Hardware Telemetry Structure

Offset Type Notes

0x0000 Unsigned 16-bit integer Number of fixable flash

errors

0x0002 Unsigned 16-bit integer Number of unfixable flash

errors

0x0004 Reserved

0x000C Signed 16-bit integer Detector Temperature

0x000E Unsigned 16-bit integer Functional Processor

Temperature

0x0010 Unsigned 32-bit integer Status bitfield

0x0014 Unsigned 8-bit integer Vdd Core set point

0x0015 Unsigned 8-bit integer Vdd MPU set point

0x0016 Reserved

0x0018 Array of 16 unsigned 16-bit integers Dark offsets

The flash error counts show the number of fixable and unfixable page errors seen since the

start of the functional application program. Note that this does not include any errors seen

while loading the application program from flash.

The detector temperature is a 16-bit signed quantity, with the four least significant bits

always reading zero. It represents the temperature of the detector, in C, multiplied by 16.

For example, a return of 0x5000 indicates a detector temperature of 80 C. A return of

0xE700 indicates a detector temperature of -25 C. The detector temperature sensor is the

most accurate of the various sensors in the device.

The functional processor temperature sensor indicates the processor’s die temperature. A

temperature of 25 C will give a return of 0x0032, and the slope is approximately 1.5 C /

ADU. This sensor is not particularly accurate.

The status bitfield contains several flags related to the health of the unit.

Table 43: Status Bitfield

Bit Meaning

Bit 19 POP memory overtemperature, set at approximately 85 C

Bit 31 Thermal shutdown, set at approximately 160 C

All other bits Reserved

The bit 31 thermal shutdown has not been tested. It is quite possible that the other thermal

shutdown mechanisms in the unit will trip first and render the star tracker

uncommunicative.

The Vdd set points are automatically adjusted by the functional processor’s Smart Reflex

peripheral to provide the needed voltages as a function of device temperature and age. For

revision 4 hardware, the two most significant bits will always be set and the six least-

significant bits can be decoded as 6-bit integers commanding the respective DC/DC

converters. For revision 5 hardware the values are in the range 0-15.

The first eight dark offsets correspond to the first image buffer, and the second eight to the

second image buffer. These are the average brightness, across the eight colour channels,

of the dark columns.

 Statistics Telemetry Structure

Table 44: Complete Statistics Telemetry Structure

Offset Type Notes

0x0000 Unsigned 16-bit integer Good rows in image 1

0x0002 Unsigned 16-bit integer Good rows in image 2

0x0004 Array of 8 32-bit IEEE floating-point Mean value in image 1

0x0024 Array of 8 32-bit IEEE floating-point Mean value in image 2

0x0044 Array of 8 32-bit IEEE floating-point Spatial variation in image 1

0x0064 Array of 8 32-bit IEEE floating-point Spatial variation in image 2

0x0084 Array of 8 32-bit IEEE floating-point Temporal variation

between images

0x00A4 Unsigned 32-bit integer Reserved

0x00A8 Unsigned 32-bit integer Reserved

The complete statistics telemetry is only valid if the functional processor has been

specifically commanded to gather statistics.

Table 45: Partial Statistics Telemetry Structure

Offset Type Notes

0x0000 32-bit zero Reserved

0x0004 32-bit IEEE floating-point Integrated brightness of all

pixels in ROI of image 1

0x0008 32-bit IEEE floating-point Integrated brightness of all

pixels in ROI of image 2

The partial statistics telemetry is returned if the functional processor has not been

specifically commanded to gather statistics. It returns the total integrated brightness in

both images, which can be used as a quick check to determine if the sensor is pointed close

to the sun or Earth.

 Image Telemetry Structure

The image telemetry structure contains information on the location of bright spots on the

image. There are two image structures, one for each of the two images.

Table 46: Image Telemetry Structure

Offset Type Notes

0x0000 Unsigned 32-bit integer Initialization flag

0x0004 Signed 32-bit integer Image return code

0x0008 Signed 32-bit integer Number of lit pixels

0x000C Unsigned 32-bit integer Number of peaks

0x0010 64-bit IEEE floating-point Exposure error

0x0018 64-bit IEEE floating-point Image capture time relative

to functional processor start

0x0020 Array of 30 peak-entry structures List of peaks

Each image structure contains 30 peak-entry structures. Their format is shown below.

Table 47: Peak Entry Structure

Offset Type Notes

0x0000 Array of 2 signed 32-bit integers Peak position (row, column)

0x0008 Signed 32-bit integer Peak intensity

 ERS Telemetry Structure

The ERS telemetry structure contains information on the angular velocity estimation and

electronic-rolling-shutter distortion compensation.

Table 48: ERS Telemetry Structure

Offset Type Notes

0x0000 Unsigned 32-bit integer Initialization flag

0x0004 Signed 32-bit integer ERS return code

0x0008 Array of 10 32-bit signed integers Star mapping

0x0030 64-bit IEEE floating-point Fit residual

0x0038 Array of 6 64-bit IEEE floating-points Upper triangle of angular

velocity covariance

 Centroid Telemetry Structure

The centroid telemetry structure contains information on the centroids of stars in the image.

There are two centroid structures, one for each of the two images.

Table 49: Centroid Telemetry Structure

Offset Type Notes

0x0000 Unsigned 32-bit integer Initialization flag

0x0004 Signed 32-bit integer Centroid return code

0x0008 Signed 32-bit integer Number of good stars

0x000C Unsigned 32-bit integer Reserved

0x0010 Array of 10x2 64-bit IEEE floating-points Best centroids (row,

column)

0x00B0 Array of 10x3 64-bit IEEE floating-points Best star vectors

 Matching Telemetry Structure

The matching telemetry structure contains information on the mapping between stars in the

image and stars in the catalog. There are two matching structures, one for each of the two

images.

Table 50: Matching Telemetry Structure

Offset Type Notes

0x0000 Unsigned 32-bit integer Initialization flag

0x0004 Signed 32-bit integer Matching return code

0x0008 Unsigned 32-bit integer Number of triangle tests

0x000C Unsigned 32-bit integer Reserved

0x0010 64-bit IEEE floating-point Matching error

0x0018 64-bit IEEE floating-point Confidence index

0x0020 Signed 32-bit integer Total star tests

0x0024 Signed 32-bit integer Total set tests

0x0028 Signed 32-bit integer Conset size

0x002C Unsigned 32-bit integer Reserved

0x0030 64-bit IEEE floating point Conset RMS error

0x0038 Array of 10 Signed 32-bit integers Matched stars

0x0060 Array of 4 64-bit IEEE floating-point

values

Inertial attitude quaternion.

Scalar component first.

0x0080 Array of 6 64-bit IEEE floating-point

values

Upper triangle of attitude

covariance

 Analog Frame Structure

Table 51: Analog Frame Structure

Offset Type Notes

0x0000 32-bit IEEE floating-point, Amps Synchronous current sense telemetry

0x0004 32-bit IEEE floating-point, Volts Synchronous bus voltage telemetry

0x0008 32-bit IEEE floating-point, Volts Synchronous Vdd Core telemetry

0x000C 32-bit IEEE floating-point, Volts Synchronous Vdd MPU telemetry

0x0010 32-bit IEEE floating-point, Volts Synchronous Vdd IO telemetry

0x0014 32-bit IEEE floating-point, C Synchronous supervisor temperature telemetry

0x0018 32-bit IEEE floating-point, Volts Synchronous Vdd supervisor telemetry

0x001C 32-bit IEEE floating-point, Volts Synchronous ADC ground telemetry (Rev4)

Synchronous Vdd detector telemetry (Rev5)

The analog frame structure is used by the self-test mode to capture snapshots of the analog

telemetry under various conditions.

9.2. Functional Processor Mapping

9.2.1. Memory Map

Table 52: Functional Processor Memory Map

Address Range Function

0x40200000 – 0x4020FFFF SRAM, containing bootloader

0x80000000 – 0x87FFFFFF SDRAM, general purpose

0x88000000 – 0x88FFFFFF SDRAM, Image buffer 0

0x89000000 – 0x89FFFFFF SDRAM, Image buffer 1

0x8A000000 – 0x8AFFFFFF SDRAM, Image buffer 2

0x8B000000 – 0x8BFFFFFF SDRAM, Image buffer 3

0x8C000000 – 0x8CFFFFFF SDRAM, Image buffer 4

0x8D000000 – 0x8DFFFFFF SDRAM, Image buffer 5

0x8E000000 – 0x8EFFFFFF SDRAM, Image buffer 6

0x8F000000 – 0x8FFFFFFF SDRAM, Image buffer 7

The functional processor has memory mapped RAM as shown above that can be accessed

using PEEK and POKE commands. In addition, there are a number of memory-mapped

peripheral devices. Attempts to access unimplemented memory regions will not result in

a NACK, but will result in a “Data abort” emergency terminate message.

9.2.2. NAND Flash

Table 53: Functional Processor NAND Map

NAND Page Function

0x00000 – 0x0001F Boot image 0

0x00040 – 0x0005F Boot image 1

0x00080 – 0x0009F Boot image 2

0x000C0 – 0x000DF Boot image 3

0x00100 – 0x013F Calibration structure

0x00140 – 0x001BF Block Relocation Table

0x001C0 – 0x0023F Block Relocation Table

Backup

0x00240 – 0x002BF Block Backup Table

0x002C0 – 0x0033F Block Backup Table

Backup

0x00340 – 0x00340 ECC Signal Page

0x00400 – 0x00BFF Hash table catalog

0x00C00 – 0x00FFF Star table catalog

0x01000 – 0x07FFF Triangle table catalog

0x08000 – 0x08FFF Application image

0x10000 – 0x11FFF NAND, Image buffer 0

0x12000 – 0x13FFF NAND, Image buffer 1

0x14000 – 0x15FFF NAND, Image buffer 2

0x16000 – 0x17FFF NAND, Image buffer 3

0x18000 – 0x19FFF NAND, Image buffer 4

0x1A000 – 0x1BFFF NAND, Image buffer 5

0x1C000 – 0x1DFFF NAND, Image buffer 6

0x1E000 – 0x1FFFF NAND, Image buffer 7

The functional processor NAND memory is divided into pages and blocks. Each page

contains 2 kB of ECC corrected data (the ECC check-bits are not easily visible to the user).

A page is the smallest programmable unit. 64 consecutive pages make up a block, which

is the smallest erasable unit.

If the functional processor is commanded to boot from NAND flash, it will first attempt

boot image 0. If there are errors uncorrectable by ECC in this image, it will move on to

boot image 1, and so on for boot images 2 and 3.

 Calibration Structure

Table 54: Calibration Structure

Offset Type Notes

0x0000 32-bit unsigned integer Sensor serial number

0x0004 32-bit unsigned integer Revision

0x0008 Array of 2 x 64-bit IEEE-754 floating point Pixel pitch in two directions (m)

0x0018 64-bit IEEE-754 floating point Focal length (m)

0x0020 64-bit IEEE-754 floating point Inverse focal length (1/m)

0x0028 Array of 2 x 64-bit IEEE-754 floating point Sin(eta) x 2

0x0038 Array of 2 x 64-bit IEEE-754 floating point Cos(eta) x 2

0x0048 Array of 2 x 64-bit IEEE-754 floating point Beta_r x 2

0x0058 Array of 2 x 64-bit IEEE-754 floating point Beta_s x 2

0x0068 Array of 2 x 64-bit IEEE-754 floating point Beta_t x 2

0x0078 Array of 2 x 64-bit IEEE-754 floating point Optical center pixel location

0x0088 Array of 3 x 64-bit IEEE-754 floating point Optical axis vector, encoding

focal length (m)

0x00A0 Array of 3 x 3 x 64-bit IEEE-754 floating point C_MD rotation matrix

0x00E8 Array of 2 x 32-bit signed integer Active array dimensions x 2

0x00F0 Array of 2 x 32-bit signed integer Raw array dimensions x 2

0x00F8 Array of 2 x 32-bit signed integer First Pixel dimensions x 2

0x0100 Array of 2 x 8-bit unsigned integer Flip axis x 2

0x0102 16-bits of padding

0x0104 Array of 4 x 16-bit signed integer Analog offsets – no longer

recommended for use

0x010C 32-bit unsigned integer Use ROI

0x0110 ROI definition

The Use ROI field may be one of the following:

Table 55: Use ROI Field

Use ROI Field Meaning

0 No ROI bound

1 Row ROI bound

2 Ellipse ROI bound

3 Compound ROI bound

If No ROI bound is selected then the entire imager is considered to be the region of interest.

Otherwise, the ROI definition field in the calibration structure specifies the ROI. The form

of the definition depends on the Use ROI field.

Table 56: Row ROI Bound ROI Definition

Offset Type Notes

0x0000 Array of 389 x 16-bit unsigned integers Row start

0x030A Array of 389 x 16-bit unsigned integers Row end

Each entry in the table controls the ROI bound for five rows in the image. If the row start

is greater than the row end, then the row is considered to have no valid pixels in it. Using

the Row ROI bound a rectangular window can be easily created. Custom window shapes

can also be made, though they will be somewhat jagged due to the five row bundling.

Table 57: Ellipse ROI Bound ROI Definition

Offset Type Notes

0x0000 16-bit signed integer Top row of bounding ellipse

0x0002 16-bit signed integer Left column of bounding ellipse

0x0004 16-bit signed integer Bottom row of bounding ellipse

0x0006 16-bit signed integer Right column of bounding ellipse

0x0008 16-bit signed integer In boundary width

0x000A 16-bit signed integer Out boundary width

This structure defines an elliptical ROI. The ellipse is specified by the elliptical bounds –

it fits within a rectangular bounding box which is not rotated with respect to the detector

axes.

The boundary width parameters are relevant if the boundary weighting is activated in the

control structure. This algorithm penalizes stars that are detected near the ROI boundary.

Part of the required definition is the in_bnd (where penalties begin) and out_bnd (where

penalties are maximum). The in_bnd field specifies the number pixels inside the boundary

where penalties should begin; out_bnd specifies the number of pixels outside the boundary

where they hit their maximum. Centroids within this boundary range are assigned a

linearly-interpolated weight from 1 to 0.01 (max penalty). This weight multiplies any

intensity weighting, if applicable. If the ROI and boundary regions are not defined

appropriately, no weights are assigned.

Table 58: Compound ROI Bound ROI Definition

Offset Type Notes

0x0000 Array of 389 x 16-bit unsigned integers Row start

0x030A Array of 389 x 16-bit unsigned integers Row end

0x0614 Array of 4 x 16-bit signed integers Elliptical bounds

0x061C 16-bit signed integer In boundary width

0x0626 16-bit signed integer Out boundary width

The compound ROI bound combines both the row bound and the elliptical bound. The

row bound is used to produces the ROI shape, while the elliptical bound is used for

boundary weighting only.

 Block Relocation Table

After booting, the functional processor will read the block relocation table from NAND

flash. This table allows the mapping of logical NAND blocks to physical NAND blocks

to be changed. Its nominal use is to bypass bad NAND blocks.

Each of the 128 pages within the table may have zero or more block relocation entries.

Table 59: Block Relocation Entry

Offset Type Notes

0 32-bit integer Address of page in logical block

4 32-bit integer Address of page in physical block

Block relocation entries are read from a page until an out of range marker (such as

0xFFFFFFFF) is found. If the marker is found in the first entry in the page, the table is

considered complete. Otherwise the next page will be read. If a page cannot be read due

to ECC failure (bad, or erased) the table is considered complete.

Later entries will replace earlier entries. Blocks that are not explicitly relocated in the table

default to a physical address equal to the logical address.

The mapping need not be one-to-one. While each logical block maps to one physical block,

multiple logical blocks may map to one physical block.

The block relocation table, and the four boot images, may not be relocated.

 Block Backup Table

After booting, the functional processor will read the block backup table from NAND flash.

This table allows one logical block (secondary) to serve as a backup for another logical

block (primary).

A write or erasure to a primary block will have an identical effect on the secondary. If a

read to a primary block fails due to ECC mismatch, a second read will be attempted from

the backup.

Each of the 128 pages within the table may have zero or more block backup entries.

Table 60: Block Backup Entry

Offset Type Notes

0 32-bit integer Logical address of page in primary block

4 32-bit integer Logical address of page in secondary block

Block backup entries are read from a page until an out of range marker (such as

0xFFFFFFFF) is found. If the marker is found in the first entry in the page, the table is

considered complete. Otherwise the next page will be read. If a page cannot be read due

to ECC failure (bad, or erased) the table is considered complete. Later entries will replace

earlier entries.

Each block may have only one backup. It is valid, but not necessary, to have a bidirectional

backup structure. I.e. block A may backup block B, and block B may backup block A.

The block relocation table and the block backup table have preset backup locations, as

shown in Table 53, which cannot be changed. It is legal to enter backup blocks for any of

the four boot images, but the boot process itself will only consider the first four physical

blocks.

 ECC Signal Page

Immediately after booting (prior to reading the backup or relocation tables), the functional

processor will attempt to read the ECC Signal Page using 4-bit ECC. If this read is

successful, and returns a non-erased result, then 4-bit ECC will be used as the default for

all subsequent NAND reads and writes. Otherwise, 1-bit ECC will be used.

If the functional processor ECC default does not match the ECC mode used in the NAND

flash then reads (including the backup and relocation tables) will not be successful.

9.2.3. Image Buffers

Image buffers may be stored in SDRAM or in NAND flash. In either event, they have the

same format.

Table 61: Image Buffer Format

Offset Type Note

0x00000000 Reserved Dark header

0x0000C000 Array of 2608 x 16-bit unsigned integers First row of active pixels

0x0000D460 Array of 36 x 16-bit unsigned integers First row of leading barrier pixels

0x0000D4A8 Array of 84 x 16-bit unsigned integers First row of dark pixels

0x0000D550 Array of 14 x 16-bit unsigned integers First row of trailing barrier pixels

0x0000D56C Padding Uninitialized garbage data

0x0000D800 Array of 2608 x 16-bit unsigned integers Second row of active pixels

0x0000EC60 Array of 36 x 16-bit unsigned integers Second row of leading barrier pixels

0x0000ECA8 Array of 84 x 16-bit unsigned integers Second row of dark pixels

0x0000ED50 Array of 14 x 16-bit unsigned integers Second row of trailing barrier pixels

… … …

0x00B6E800 Array of 2608 x 16-bit unsigned integers 1944th row of active pixels

…

Each pixel is represented as a 16-bit unsigned integer. The detector uses a 12-bit ADC,

and valid values are between 0 and 4095. Dark pixels give a measure of the signal chain

offset. Barrier pixels have undetermined values and should not be used.

9.2.4. Control Structure

The control structure is sent by the supervisor to the functional processor when a suitable

GO command is received, and causes the functional processor to begin a cycle.

Table 62: Control Structure

Offset Type Notes

0x0000 32-bit IEEE-754 floating point Exposure length

0x0004 32-bit IEEE-754 floating point Time between first and second exposure

starts

0x0008 32-bit bitfield Functional GO bitfield

0x000C 8-bit signed integer Thumbnail downsample

0x000D 8-bit bitfield Heater select

0x000E 8-bit bitfield Weighting algorithm control

0x000F 8-bit signed integer Heater target (deg C x 2)

0x0010 Array of 4 16-bit signed integers Analog offsets for 4 colour channels

0x0018 16-bit unsigned integer Thresholding raw threshold

0x001A 8-bit bitfield Thresholding algorithm

0x001B 8-bit unsigned integer Centroid window radius

0x001C 16-bit unsigned integer Thresholding bin threshold

0x001E 16-bit unsigned integer Thresholding maximum average

0x0020 16-bit unsigned integer Thresholding minimum lit-pixels/star

0x0022 16-bit unsigned integer Thresholding maximum lit-pixels/star

0x0024 Array of 3 32-bit IEEE-754

floating-point

Local gravity vector (for atmospheric

correction)

0x0030 16-bit signed integer ERS matching threshold

0x0032 16-bit signed integer Lit pixel limit

0x0034 32-bit IEEE-754 floating point Matching max set multiplier

0x0038 32-bit IEEE-754 floating point Matching set stopping threshold multiplier

0x003C 32-bit IEEE-754 floating point Matching gamma

0x0040 32-bit IEEE-754 floating point Matching max conset error

0x0044 32-bit IEEE-754 floating point Matching target arc length

0x0048 32-bit IEEE-754 floating point Time offset between functional processor

t=0 and supervisor processor t=0

0x004C 32-bit unsigned integer Sequence counter, echoed back by

functional processor in telemetry

0x0050 Array of 3 32-bit IEEE-754

floating-point

Spacecraft velocity, relative to the sun in

ECI frame

0x005C 32-bit unsigned integer Previous return bitfield

0x0060 Array of 4 32-bit IEEE-754

floating-point

Previous quaternion

0x0070 Array of 3 32-bit IEEE-754

floating-point

Previous rate

0x007C 32-bit IEEE-754 floating-point Epoch of previous return relative to

supervisor processor t=0 (sec)

0x0080 32-bit IEEE-754 floating-point Maximum cross-axis rate change between

frames for ERS compensation (rad/sec).

0x0084 32-bit IEEE-754 floating-point Maximum about-axis rate change between

frames for ERS compensation (rad/sec).

0x0088 32-bit IEEE-754 floating-point Maximum age of previous solution for ERS

compensation. (sec)

0x008C 32-bit IEEE-754 floating-point Max angle change from previous solution

for poor quality match. (rad)

0x0090 32-bit unsigned integer Realtime clock (1.048576 sec ticks since

J2000)

 Exposure Length

This field allows the shutter length of the detector to be controlled. Longer shutters collect

more photons and potentially detect more stars, but give worse streaking when the

spacecraft has a high angular rate. Longer exposures also increase the total time-to-

solution for the star tracker.

 Time Between First and Second Exposure Starts

This field determines the time between the starts of the two exposures. If it is set to a length

shorter than the exposure length, the exposure length will be used instead. Usually the

minimum value would be used to give better time-to-solution, though a longer timebase

will help with rate estimation if previous solution feedback is not being used.

When set to a negative value (typically -1.0) the second exposure is inhibited. Only one

exposure is taken. This makes the star tracker faster, though external rate information is

now required to allow correct ERS operation.

 Functional GO bitfield

The functional GO bitfield allows the various processing stages to be enabled or disabled.

Table 63: Functional GO Bitfield

Bit Function

0 (LSB) Activate the detector to take two frames

1 Compute image noise statistics

2 Process the images

3 Synchronize DC/DC converters to reduce noise (No noticeable effect.

Not recommended to use)

4 Produce a thumbnail image

5 Threshold and centroid the images

6 Compute star vectors

7 Perform ERS correction

8 Perform star matching

9 Perform time correction

10 Perform Two-Pass Star Selection (for matching)

11 Perform self-test

12 – 15 Copy first image out

16 – 19 Copy first image in

20 – 23 Copy second image out

24 – 27 Copy second image in

28 Cache triangle table

29 Perform benchmark

30 Use hardware BLC to set analog offsets

31 Perform atmospheric refraction correction

The supervisor processor will automatically set bit 11 when commanded to self-test. It

should typically be cleared otherwise.

Table 64: Copy Image Out Code

Copy Image Out Code Function

0x0 Do nothing

0x1 Copy image into RAM buffer 1

0x2 Copy image into RAM buffer 2

0x3 Copy image into RAM buffer 3

0x4 Copy image into RAM buffer 4

0x5 Copy image into RAM buffer 5

0x6 Copy image into RAM buffer 6

0x7 Copy image into RAM buffer 7

0x8 Save image into Flash buffer 0

0x9 Save image into Flash buffer 1

0xA Save image into Flash buffer 2

0xB Save image into Flash buffer 3

0xC Save image into Flash buffer 4

0xD Save image into Flash buffer 5

0xE Save image into Flash buffer 6

0xF Save image into Flash buffer 7

The Copy Image Out Codes, located at offsets 12 and 20, may be used to copy the images

that have just been taken by the detector into additional RAM or flash buffers.

Table 65: Copy Image In Code

Copy Image In Code Function

0x0 Do nothing

0x1 Copy image from RAM buffer 1

0x2 Copy image from RAM buffer 2

0x3 Copy image from RAM buffer 3

0x4 Copy image from RAM buffer 4

0x5 Copy image from RAM buffer 5

0x6 Copy image from RAM buffer 6

0x7 Copy image from RAM buffer 7

0x8 Load image from Flash buffer 0

0x9 Load image from Flash buffer 1

0xA Load image from Flash buffer 2

0xB Load image from Flash buffer 3

0xC Load image from Flash buffer 4

0xD Load image from Flash buffer 5

0xE Load image from Flash buffer 6

0xF Load image from Flash buffer 7

The Copy Image In Codes, located at offsets 16 and 24, may be used to replace the images

that have just been taken by the detector with images from RAM or flash buffers. These

images will then be processed as if they were live.

 Thumbnail Downsample

This field, together with the thumbnail bit in the GO bitfield, can be used to produce a

compressed image. Further details of this feature are TBD.

 Weighting Algorithm Control

Table 66: Weighting Algorithm Control

Bit Function

0 (LSB) Use intensity weighting

1 Use boundary penalties

2 – 7 (MSB) Reserved

When these bits are zero, all detected star vectors are weighted equally when the final

quaternion is calculated. Intensity weighting allows for brighter stars, which are presumed

to have smaller centroid error, to be weighted above dimmer stars. Boundary penalties

reduce the weighting of stars near the edge of the ROI, which may have erroneous centroids

due to clipping effects.

 Heater Control

The star tracker can be configured with thermostatic controlled heaters to keep

temperatures constant across an orbit. This is most effective in the ST-16, where there is

a considerable thermal resistance between the circuit board and its chassis. The ST-16RT’s

and ST-16RT2’s detector is well coupled to the chassis, and so a modest amount of heater

power has little effect on its temperature.

Table 67: Heater Select

Bit Function

0 (LSB) Heat the detector by keeping the electronics at full speed even when

not needed.

1 Heat the functional processor by keeping its clock at full speed even

when not needed.

2 – 7 (MSB) Reserved

The Heater Select parameter allows various onboard heaters to be enabled. By setting this

parameter to zero, all heater functions are disabled.

The Heater Target parameter adjusts the thermostat’s setpoint. It is an 8-bit signed

quantity, and the units are half degrees. Thus the setpoint can lie in the range of -64 C to

+63.5 C. This setpoint is compared to the detector temperature to determine when to apply

heat.

 Analog Offsets

The analog offsets for the four colour channels drive DACs in the detector signal chains to

keep the amplifiers in their linear region. The offsets are calibrated for best performance

at the factory, and the factory values should be used unless there is good reason to change

them.

If the Use Hardware BLC bit in the GO code is set then these values are not used, and

instead the detector will attempt to determine the analog offsets in realtime. That may give

better compensation for temperature effects, but risks bad frames from radiation hits.

 Thresholding raw threshold

This determines the required brightness for a single pixel to be considered ‘lit’. Smaller

values will detect more stars, but risk false stars and excessive processing time.

 Thresholding Algorithm

Table 68: Thresholding Algorithm

Bit Function

0 (LSB) Use adaptive thresholds

1 Use two-pass centroiding

2 – 7 (MSB) Reserved

If adaptive thresholds are selected then the average brightness of a 128 pixel wide row

window is subtracted from a pixel’s brightness before the raw threshold comparison is

made. This compensates for elevated background due to stray light. If adaptive thresholds

are not selected then the dark offset alone is subtracted from the brightness before the

comparison.

If two-pass centroiding is selected then centroids will only be calculated for the best

candidate stars based on their total brightness. Otherwise all stars will be centroided.

Setting this bit can give a speed improvement for a scene with many lit pixels. There is no

known disadvantage.

 Centroid Window Radius

If this value is set to zero then the centroid of a star is based on the lit pixels that make it

up.

If this value is non-zero, then the centroid is based on a circular window, centered on a

first-pass centroid made from the lit pixels. The central pixel is not included in the radius.

Thus, a value of 7 gives a window diameter of 15 pixels.

Circular windows give lower noise performance at low rate, but are unable to deal very

well with motion streaks.

 Thresholding Bin Threshold

For a star to be considered the integrated brightness of all of its lit pixels must reach this

value. Setting this value higher will result in fewer star detections, but also fewer spurious

peaks.

 Thresholding Maximum Average

This parameter is only relevant if adaptive thresholds have been selected in the thresholding

algorithm field. If the average of a 128 pixel wide row window exceeds this value then the

pixel will not be considered as lit. Set this value to zero to disable the function.

The intent of this feature is to reject the moon and other bright extended objects.

 Thresholding Minimum Lit-Pixels/Star

If a peak has fewer adjacent lit pixels (determined by horizontal and vertical, but not

diagonal, connectivity) than this value, it is not considered a candidate for a star.

This is the first line of defense against thermal and proton noise. If it is set too high it may

eliminate real stars.

 Thresholding Maximum Lit-Pixels/Star

If a peak has greater adjacent lit pixels than this value, it is not considered a candidate for

a star.

This is intended to reject the moon, Earth limb, and bright baffle edges. It can also be used

to intentionally eliminate bright planets and stars. Bright stars may saturate the detector

and centroid poorly, while planets are not currently in the star tracker catalog.

 Local Gravity Vector

If atmospheric refraction is turned on, the star tracker uses this field to determine the nadir

direction. It is intended for sea-level ground-based testing only.

 ERS Matching Threshold

TBD

 Lit Pixel Limit

The total number of lit pixels permitted in an image is:

1,000,000

𝐿𝑖𝑡 𝑃𝑖𝑥𝑒𝑙 𝐿𝑖𝑚𝑖𝑡 + 1

The star tracker will abort processing of an image if the number of lit pixels approaches

this value. If this value is set high then more scenes will abort, but the maximum time-to-

reply is reduced. If this value is set low then fewer scenes will abort, but the star tracker

may take a long time to process bright scenes.

 Matching Max Set Multiplier

TBD

 Matching Set Stopping Threshold Multiplier

TBD

 Matching Gamma

TBD

 Matching Max Conset Error

TBD

 Matching Target Arc Length

TBD

 Time Offset Between Functional Processor t=0 and
Supervisor Processor t=0

This field is updated by the supervisor after a GO command is received, after the functional

processor clock is reset and just before the control structure is sent to the functional

processor. It can be read as a measure of the boot-up time.

 Sequence Counter

The supervisor increments the sequence counter one for each GO command. The user may

write to this value as desired.

 Spacecraft Velocity

This vector contains three scalar elements, encoding the spacecraft velocity with respect to

the sun in ECI frame. Depending on the ephemeris control the supervisor may

automatically update the vector, or it may be set by the user. The velocity is used by the

functional processor for stellar aberration correction (not currently implemented).

 Previous Return Bitfield

This field contains the bitfield from the previous star tracker result.

 Previous Quaternion

This field contains the quaternion from the previous star tracker result. While the result

structure uses 64-bit floating point values, here only 32-bit floating point values are used.

 Previous Rate

This field contains the rate from the previous star tracker result. While the result structure

uses 64-bit floating point values, here only 32-bit floating point values are used.

 Epoch of Previous Return

This field is used as an input to the functional processor, telling it the epoch of the previous

return relative to the functional processor t=0 clock. If the Previous Epoch Override value

is non-zero then the supervisor will not automatically update this field. Otherwise it is set

by the supervisor after the functional processor clock is reset but before the control

structure is sent.

Since the previous return happened prior to the current moment, this value should always

be negative.

 Maximum Cross-axis/About-axis Rate Change

These fields specify the maximum difference between the internally calculated rate (from

comparing image 1 and image 2) and the previous rate in the control structure. If the limit

is exceeded then the star tracker will assume that the satellite is under angular acceleration

at that the more recent (internally calculated) rate is valid. Otherwise the star tracker will

use the more accurate previous rate information.

There are two fields, one for cross-axis rate and the other for about-axis rate. The about-

axis rate knowledge is typically worse, so this field can be set higher. Both comparisons

must pass in order to use the previous rate information.

Setting either value to zero forces the comparison to fail, and the internally calculated rate

to be used. Setting a value to a negative number forces that one comparison to pass.

The previous rate will never be used if the previous return bitfield does not have the master

return bit set.

 Maximum Age of Previous Solution

This field specifies the maximum age of the previous solution, relative to the start of the

functional processor clock. If the previous solution is too old then the previous rate is never

used and the internally generated rate is chosen.

Setting this value to zero forces the comparison to fail, and the internally calculated rate to

be used. Setting the value to a negative number forces the comparison to pass.

 Maximum Angle Change

This field specifies the maximum quaternion rotation between the previous quaternion and

the current quaternion, if the current solution is a poor quality match. The assumption is

that if a poor quality match is consistent with a previous solution then it is likely good,

whereas if it is very different from the previous solution it is likely erroneous. If the

difference is too great, the master return bit will be cleared. This has no effect if the current

solution is high quality.

Setting this value to zero specifies that poor quality solutions never be used, while setting

the value to a negative number disables the check.

10. Operating Concept

The star tracker is a flexible device which can be used in many ways. Nominal operation

for ACS purposes will follow this sequence:

1. Power on

2. Send INIT 0x00002000 to start Idle mode

3. Send GO 0x0B to transition to Processing mode, booting the functional processor

from NAND flash, and enabling the timeout

4. Poll with READ EDAC commands the “Result structure length” channel until

enough bytes have arrived to encompass all of the desired star tracker data

5. Send one or more READ RESULT commands to read the star tracker data. Feed

this into the satellite ACS algorithm.

6. Optionally, send one or more READ EDAC commands to read status data from the

supervisor processor. Feed this into the satellite housekeeping telemetry system.

7. Go to step 3

If polling is not desired, follow this simpler sequence:

1. Power on

2. Send INIT 0x00002000 to start Idle mode

3. Send COMBINATION 0x00001E0B to transition to Processing mode, booting the

functional processor from NAND flash, and enabling the timeout.

4. Wait for the COMBINATION reply packet, which will contain the return code,

quaternion, angular rate, and epoch time.

5. Optionally, send one or more READ EDAC commands to read status data from the

supervisor processor. Feed this into the satellite housekeeping telemetry system.

6. Go to step 3

To get the very fastest operation, turn on the functional processor with a GO 0x07

command. Then send a sequence of COMBINATION 0x00001E2F commands. These

will keep the functional processor running at all times and not reboot between cycles. This

will save ~38 msec from each cycle time (for Rev 4. Less for Rev 5), but may risk radiation

induced crashes.

11. Frames of Reference and Data Definitions

The primary data return from the star tracker is a four-element quaternion vector (scalar

component as the first element) representing the rotation from the inertial reference frame

into the frame of the sensor. This section presents a short summary of these reference frame

definitions and some helpful mathematical relationships to help make best use of the sensor

output.

The inertial frame used by the sensor is the Earth-Centred Inertial J2000 system. Star

positions are not corrected for parallax, sacrificing some precision for simpler clock-free

operation.

11.1. ST-16

+X
+Y

+Y

+Z

Figure 2: Informal ST-16 Coordinate Directions

The sensor reference frame is defined by mechanical features on the housing. Two primary

vectors define the sensor reference frame. We have included both informal and formal

definitions of these vectors.

• The +Z axis is informally the outward boresight of the sensor (i.e., direction the

lens is facing). Formally, this direction is normal to the mounting bosses on the

back of the sensor, pointing away from host spacecraft.

• The +X axis is informally in the direction of the power/data connector. More

formally, the line of this vector is oriented 26.997° counterclockwise (facing the

lens), from the datum formed by the two alignment pins.

• The +Y is chosen to make the coordinate system right-handed.

11.2. ST-16RT and ST-16RT2 – Chassis with Prism

The sensor reference frame is defined by the optical prism. The informal vector definitions

are the same as for the ST-16. The formal definitions are:

• The mirror face pointed away from the power/data connector (Surface 1) defines

the –X axis.

• The cross-product between the two mirror faces defines the Z axis.

• The +Y axis is chosen to make the coordinate system right-handed.

+X
+Y

+Y

+Z

Figure 3: Informal Coordinate Definitions for ST-16RT and ST-16RT2 with Prisms

Note that while the Y axis is very close to the second mirror face normal, they may differ

slightly if the prism angle is not exactly 90°. The ST-16RT and ST-16RT2 retain slots for

alignment pins to make its mounting backwards-compatible with the ST-16, but the pins

are not surveyed for calibration.

11.3. ST-16RT2 – Chassis with Polished Corners

The sensor reference frame is defined by measurements of the polished corners. First, an

informal frame definition is needed to establish idealized surface normal vectors of the two

polished corners. This informal frame is first defined with:

• The +X axis in the outward direction of the power/data connector;

• The +Z axis in the outward boresight of the sensor (i.e., direction the lens is facing);

• And the +Y axis is chosen to make the coordinate system right-handed.

Surface 1

Surface 2

Figure 4: Informal ST-16RT2 with Polished Corners Coordinate Definitions

Using this informal reference frame, an ideal surface normal of each polished corner can

be defined. Surface 1 is selected as the polished surface that is visible from the connector

side of the star tracker.

The ST-16RT2 with polished corners retains slots for alignment pins to make its mounting

backwards-compatible with the ST-16, but the pins are not surveyed during calibration.

Surface 1

Surface 2

Surface 1

Figure 5: An alternate view of the Polished reference corners (blue)

11.4. Sensor Frame Measurement

The transformation between an external reference frame (i.e. the spacecraft body frame)

and the sensor frame is determined with the following procedure.

Let 𝒏̂𝑖 be the unit vector that represents a measured surface normal in the external reference

frame. For both the chassis with prism and the chassis with polished corners, the normal

vector of the reflective surfaces are labelled as 𝒏̂1 and 𝒏̂2 for Surface 1 and Surface 2

respectively.

For each chassis type, the normal of Surface 1 defines a vector in the sensor frame. If 𝒏̂𝑖 is

a measured surface normal in the external frame, 𝒔̂𝑖 represents the same vector in the sensor

reference frame. The surface normal vector of Surface 1 is defined in the table below.

Table 69: Surface 1 definitions in the sensor frame

Chassis with Prism Chassis with Polished Corners

𝒔̂1 = [
−1
0
0

] 𝒔̂1 = [

cos(45∘)
cos(𝛼)

cos(55∘)
]

The angle 𝛼 is determined as

cos 𝛼2 = 1 − cos(55∘)2 − cos(45∘)2

𝛼 ≅ 65.573∘

Measurements of Surface 2 are not used to directly define a vector in the sensor frame.

Instead, the cross product of Surface 1 and Surface 2 is used to define an orthogonal vector.

𝒏̂3 = [𝒏̂1]×𝒏̂2

Surface 1
Surface 2

Note that the cross product operator, []×, is defined for a vector 𝒂⃗⃗ = [

𝑎1

𝑎2

𝑎3

] as

[𝒂⃗⃗]× = [
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0
]

The cross product in the sensor frame is similarly determined and the definitions are

tabulated below.

𝒔̂3 = (𝒔̂1)×𝒔̂2

Table 70: Vector cross product definitions in the sensor frame

Chassis with Prism Chassis with Polished Corners

𝒔̂3 = [
0
0
1
] 𝒔̂3 = [

0
−2cos(45°) cos(55°)

2 cos(45°) cos(𝛼)
]

With two surface normal measurements and the vector definitions above, the

transformation between the sensor frame and the external measurement frame can be

computed. A direction cosine transformation matrix from the sensor frame to the external

measurement frame, 𝑪𝑀𝑆, can be calculated as

𝑪𝑀𝑆 = [𝒏̂1 (𝒏̂3)×𝒏̂1 𝒏̂3][𝒔̂1 (𝒔̂3)×𝒔̂1 𝒔̂3]
𝑇

Use of this result to transform an arbitrary vector in the sensor frame, 𝒔⃗ , into the external

measurement frame, 𝒎⃗⃗⃗ , is accomplished simply as

𝒎⃗⃗⃗ = 𝑪𝑀𝑆𝒔⃗

11.5. Quaternion Form

The quaternion returned by the sensor is a vector of four double-precision numbers. The

scalar part of the quaternion is the first element; the vector part, the last three.



















=







=

3

2

1

0

q

q

q

q

q

v

s

q
q

The rotation matrix from the inertial frame (I) to the sensor body frame (B) can be found

from:

() () ()
() () ()
() () ()
















+−−+

++−−

−++−

=
2

2

2

110322031

1032

2

1

2

33021

20313021

2

3

2

2

2122

2212

2221

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

BIC

The attitude error covariance returned from the sensor follows the classic definition by

Shuster, calculated from the body-frame star vectors.

()
1−









−= 

i

T

iibbIP

Note: This covariance is expressed in the sensor frame.

11.6. Epoch Time

The epoch time measurement is expressed in seconds from the reception of the command

that initiated the cycle (see section 7.8). If time correction is turned off, then this represents

the moment in time at which the returned quaternion is valid. If time correction is turned

on, the star tracker uses its attitude and rate knowledge to extrapolate the quaternion to the

moment the command was received. In this case the quaternion telemetry can be used in

the satellite ACS without requiring epoch telemetry.

12. Flash Memory Issues

12.1. Introduction

There are two flash memories in the star tracker, as shown in Table 71.

Table 71: Flash Memory Parameters

 Supervisor Processor Functional Processor

Flash Technology NOR SLC Flash NAND SLC Flash

Program/Erase Endurance 20,000 minimum

150,000 typical

100,000

Read Endurance Unlimited Variable

It is well known that flash memories have a write endurance limit. After a certain number

of program/erase cycles, a page or block may become damaged and unusable. It is the

user’s responsibility to ensure that these limits are not approached. In the event that a small

region of flash wears out due to accidental program/erase loops it should be possible to

modify the software to avoid this region and recover use of the device.

The supervisor NOR flash has no read endurance limit – the memory contents can be read

an infinite number of times without disturbing them. This is not true for the functional

NAND flash. Each read cycle disturbs the contents of the memory, and after a large

number (literature suggests 1,000,000) bits may become spuriously programmed.

In normal operations, the functional processor reads from flash in the following ways:

• At bootup, the boot block is read

• The ECC signal page, flash relocation and backup tables are read

• The application image is read

• The ECC signal page, flash relocation and backup tables are read again

• The calibration table is read

• The entire star table and hash table are read

• A small subset of the triangle table is read, depending on which stars are identified

in the images

If the star tracker is cycling at its maximum rate (~2 Hz) it may accumulate 172,800 cycles

in a day. Since each flash block contains 64 pages, this gives 11,059,200 read accesses to

a given block. This is well within the literature values for read disturbance.

Figure 6: Flash Read Disturbance vs Sequence Number for 6 Star Trackers

Laboratory tests have been very confusing. Some units have shown flash degradation,

while others have stubbornly refused to. Figure 6 shows data collected during the thermal

acceptance testing of six units. Units 1021 and 1024 show errors, starting at about 40,000

cycles. The other four units show no errors.

In this particular case, units 1021 and 1024 are rev 5 parts, while the others are rev 4. This

would seem to be pretty clear correlation, except that some (but not all!) customers with

rev 4 hardware also report similar read disturbance errors.

Figure 7: Flash Read Disturbance and Temperature vs Time for 2 Star Trackers

For the rev 5 parts, there appears to be a temperature sensitivity to the read disturbance

effect. Figure 7 shows how the rate of error accumulation slows at high temperature, and

accelerates at low temperature.

12.2. Error Correcting Codes

The NAND flash uses error correcting codes (ECC) to mitigate against read disturbance

errors as well as bad bits that may be present from manufacturing. Two ECC strategies

may be available: 1-bit ECC and 4-bit ECC.

12.2.1. 1-bit ECC

1-bit ECC is available to all star trackers, and historically it has been the mode used at

delivery. If an EIDP makes no mention of the ECC type, then 1-bit ECC can be assumed.

1-bit ECC is so called because errors of a single bit within a 256 byte area of NAND flash

can be corrected. 2-bit errors can be detected. 3 or more bit errors may not be detectable

– we have seen more than one 3-bit error that has fooled the 1-bit ECC into believing that

it is recoverable.

12.2.2. 4-bit ECC

4-bit ECC is available on most recent star trackers. Some older rev 4 star trackers may not

support 4-bit ECC, and will return errors when 4-bit operation is attempted.

4-bit ECC is so called because errors of up to 4 bits within a 512 byte area of NAND flash

can be corrected. 5-bit errors can be detected.

4-bit ECC is slightly slower than 1-bit ECC. Experiments show that the time taken for the

functional processor to boot and load the star and hash tables increases by about 30 msec

with 4-bit ECC as compared to 1-bit ECC.

12.2.3. Migrating Between ECC Types

You may wish to move a star tracker from one type of ECC to another. An older 1-bit

ECC star tracker can be changed to 4-bit to gain better error robustness. A 4-bit ECC star

tracker may be changed to 1-bit if the very fastest operation is desired.

To move to 4-bit ECC, first make sure that the ECC Signal Page is not empty. If it is

erased, write (anything) to it. Next, issue an Upgrade NAND ECC command covering the

entire NAND IC. This will take several minutes. Finally, power the functional processor

off and back on. The NAND will now be protected by 4-bit ECC, and the functional

processor will default to 4-bits when reading and writing.

To move to 1-bit ECC, issue a Downgrade NAND ECC command covering the entire

NAND IC. This will take several minutes. Finally, power the functional processor off and

back on. The NAND will now be protected by 1-bit ECC, and the functional processor

will default to 1-bits when reading and writing.

12.3. Mitigation

Until this issue is fully understood, it is safest to assume that all star trackers are potentially

susceptible. There are two mitigation methods that can be used. Both have their

advantages and disadvantages, and the choice is left up to the customer.

12.3.1. Periodic Flash Rebuild

To employ this mitigation method, the user must periodically place the star tracker into

maintenance mode and send Rewrite NAND commands. These commands should rewrite

those areas of flash that have been subject to stress. They include:

• The boot block. Instead of the Rewrite NAND command, the Make Bootable

command should be used.

• The flash relocation and backup tables

• The application image

• The calibration table

• The entire star table and hash table

• The triangle table

Of these, the triangle table is probably stressed less than the others. It may be possible to

rewrite it less often than the other areas.

The rewrite frequency must be carefully chosen. The program/erase endurance of the

NAND flash is only 100,000 cycles. For a 10 year mission, with no margin, the maximum

rewrite frequency would be once an hour. Rewriting only once every few hours will give

margin.

The current health of the NAND flash can be estimated by reading the flash error counts at

the beginning of the hardware telemetry. By observing these trends, and appropriate

rewrite frequency can be determined.

Where possible, perform the rewrite operation in a low radiation portion of the orbit. If in

LEO, avoid the South Atlantic Anomaly (SAA). Flash memory is more vulnerable to

latchup while its charge pumps are active, performing program and erase functions.

12.3.2. Run From RAM

To employ this mitigation method, set the “Cache triangle table” bit in the functional GO

bitfield in the control structure. Then, when sending GO or COMBINATION commands,

ensure that bits 2 and 5 are set.

When the first GO or COMBINATION command is received, the star tracker will take

slightly longer than normal to execute. In addition to the star and hash tables, the entire

triangle table will be copied into RAM. The functional processor will remain turned on,

and all accesses will be to RAM. There will be no repeated flash accesses, and so the flash

will not accumulate read disturbance errors.

12.3.3. Comparison

Neither mitigation strategy is ideal. The periodic flash rebuild requires that the star tracker

be taken out of operation for a number of seconds, several times a day. This may interfere

with missions that demand very high ACS availability. It also consumes program/erase

cycles – a finite resource. There should be sufficient cycles for any normal mission, but

nevertheless it is disquieting.

Running from RAM defeats one of the prime design features of the star tracker – that the

functional processor powers down and reboots between cycles. Expect to see periodic SEU

events where the functional processor becomes corrupted and requires a full reset (GO code

of 0). The spacecraft flight computer will need to detect these events autonomously to

guarantee high ACS availability. SEL events might occur as well, and by keeping the

functional processor powered continually the chance of a destructive event may increase.

12.3.4. Recommendation

All else being equal, Sinclair Interplanetary recommends the periodic flash rebuild

mitigation method. Keep an eye on the flash error counts. Maybe your star tracker will

not experience read disturbance degradation in your application, and no mitigation will be

required.

The use of 4-bit ECC is recommended unless there is a compelling reason to do otherwise.

12.4. Catalog Rebuild

Some star trackers ship from the factory with the catalog rebuilding program installed in

the functional processor NAND flash. If a star tracker was not originally supplied with

this, the program can be loaded by the customer at a later date.

To run the program, follow these steps:

• Put the star tracker into maintenance mode

• Send the functional processor an INIT 0x00008080 command

• The star tracker will enter processing mode, and the catalog rebuild process will

begin.

• After approximately three minutes the star tracker will transition to idle mode.

The catalog rebuilding process will be complete.

• Check the functional processor message field for a statement indicating success or

failure.

The catalog rebuilding program uses the star catalog, from its nominal location, as an

input. It generates fresh hash tables and triangle tables from this. They are stored in their

nominal locations, overwriting whatever may have been stored there before.

The catalog rebuilding program is intended to provide emergency catalog replacement in

the event of catalog damage on-orbit. In the future its use may be expanded to allow for

proper motion compensation.

13. Stellar Aberration Correction

Stellar aberration correction is now fully functional in the most recent software revisions.

There are a number of different operations concepts that can be used.

13.1. No correction

To disable stellar aberration correction, set Ephemeris control to 0x40. The control

structure spacecraft velocity fields are held at zero, implicitly nulling the stellar aberration

correction.

13.2. Lowest effort

The bulk of the velocity comes from the Earth’s orbit about the sun. To correct this term

only, first use the WRITE TIME command to set the star tracker’s realtime clock to the

current epoch. Then set Ephemeris control to 0x11. The star tracker will propagate the

Earth’s motion around the sun and use that to feed the control structure velocity. No

additional configuration or attention is required.

13.3. Osculating Elements

Additional accuracy can be derived from compensating for the satellite’s motion about the

Earth. To do this, first use the WRITE TIME command to set the star tracker’s realtime

clock to the current epoch. Then use WRITE KEPS to set the osculating elements of the

satellite’s current orbit. Finally, set the Ephemeris control to 0x35. The star tracker will

propagate the Earth’s motion around the sun, and the satellite’s motion around the Earth.

The sum of these two will be fed into the control structure velocity.

The star tracker’s satellite orbit propagator is an idealized two-body model. It does not

account for J2 gravity harmonics, lunar interaction, drag, or any other disturbance. For

these reasons the Keplerian elements will quickly grow stale. The WRITE KEPS

command should be used periodically (between hours to weeks, depending on mission

requirements) to keep the osculating elements current.

13.4. Heliocentric Override

The host spacecraft can take over the duties of computing the spacecraft velocity. This can

be done if the spacecraft is on an interplanetary trajectory, or if its orbit evolves such that

Keplerian elements are not appropriate. To do this, set the Ephemeris control to 0x00.

Periodically write the most recent velocity to the velocity vector in the control structure.

This can be updated on a minute-to-minute basis if needed.

14. Rate Estimation, Feedback and Feedforward

14.1. Rate Output

The star tracker produces a vehicle angular velocity estimate in its result structure. This

rate may be generated in one of two ways.

a) By comparison of the two images taken in this frame, usually separated by 0.1

sec. The most likely rotation that maps stars seen in one image to stars seen in the

other image is chosen.

b) By comparing the quaternion solution from this frame with the “previous

quaternion” field of the control structure, computing the time between these

quaternions based on the previous epoch data.

The “rate source” bit in the return code can be inspected to determine which of the two

methods was used. If “0”, the method used in (a) was used. If “1”, the method used in (b)

was used.

Method (a) is used, unless all of the following conditions hold true:

• The time between the previous quaternion and the quaternion from this frame is

less than the “maximum age” field from the control structure (or the maximum age

field is negative).

• The previous return bitfield from the control structure has the “master return” bit

set.

14.2. Rate Input

The star tracker detector uses an electronic rolling shutter. This produces image distortion

when an exposure is taken at a non-zero angular velocity. The star tracker must have an

estimate of angular velocity in order to undistort its images and successfully match stars.

This rate may be determined in one of two ways:

a) By comparison of the two images taken in this frame, usually separated by 0.1

sec. The most likely rotation that maps stars seen in one image to stars seen in the

other image is chosen.

b) By using the “previous rate” field in the control structure.

The “ERS return code” telemetry can be used to determine which method is used. A value

of “11” indicates method (b). A positive value of 10 or less indicates method (a) with a

successful match of that number of stars.

If the time between the first and second exposure starts is negative then the second image

is suppressed and method (b) is always used. Otherwise, method (a) is used unless all of

the following conditions hold true:

• The previous epoch from the control structure is less than the maximum age,

measured at the frame t=0 time (or the maximum age field is negative)

• The previous return bitfield from the control structure has both the “master return”

and “rate source” bits set.

• The cross-axis difference between the “previous rate” and the rate estimate from

method (a) is less than the “maximum cross-axis rate change” (or the maximum

cross-axis rate change is negative).

• The about-axis difference between the “previous rate” and the rate estimate from

method (a) is less than the “maximum about-axis rate change” (or the maximum

about-axis rate change is negative).

14.3. Rate Feed-Forward

The star tracker rate estimate is based on a short time-base comparison of quaternions. A

longer window filter would reduce noise, and thus give better quaternion solutions, but the

latency would result in unacceptable error during high-acceleration spacecraft slews. The

nominal behaviour is intended to maintain availability in slews, at the cost of some inertial

performance.

The spacecraft attitude control computer may have a better estimate of rate. It can combine

star tracker quaternions (possibly from multiple star trackers) with known body dynamics

and knowledge of present actuator states. It is possible to feed this rate estimate into the

star tracker to produce more accurate quaternions.

To do this, follow this sequence each frame:

1. Send a GO or COMBINATION command to start the frame.

2. Poll for completion, if a GO command was used.

3. Read the result telemetry.

4. Determine the best angular velocity estimate, using all of the information available

to the spacecraft.

5. Write this estimate into the “previous rate” field of the control structure.

6. Write into the “previous return bitfield” field of the control structure, setting the

“master return” and “rate source” bits.

7. Goto step 1.

For simplicity, configure the star tracker with the maximum cross-axis rate, about-axis rate

and age parameters to negative numbers to disable those checks.

	1. Revision Notes
	2. Markings
	3. Mechanical
	3.1. Interface Drawing
	3.1.1. ST-16 Dimensions without Baffle
	3.1.2. ST-16RT (Prism) Dimensions without Baffle
	3.1.3. ST-16RT2 (Prism) Dimensions without Baffle
	3.1.4. ST-16RT2 (Polished Corners) Dimensions without Baffle
	3.1.5. ST-16 Dimensions with Short Rigid Baffle
	3.1.6. ST-16RT2 Dimensions with Short Rigid Baffle
	3.1.7. ST-16RT2 Dimensions with Long Rigid Baffle

	3.2. Mass Properties
	3.3. Star Tracker Mounting Points
	3.4. Alignment Reference Surface
	3.5. Baffle Mounting Points
	3.6. Vent
	3.7. Fluorine Outgassing
	3.8. Lens Cleaning
	3.9. Dust Covers
	3.10. Connector
	3.11. Interface Configurations
	3.12. Pinout
	3.13. Thermal
	3.13.1. Thermal Environment
	3.13.2. Thermal Interface
	3.13.3. Alternate Baffle Coatings

	4. Protocol Layer 1 (Physical Layer)
	4.1. Power Ground
	4.2. Chassis Ground (28 V option only)
	4.3. Power In (4 V option only)
	4.4. Power In [1..2] (28 V option only)
	4.5. Address (4 V option only)
	4.6. /Reset (4 V option only)
	4.7. Command [A|B] (RS485)
	4.8. Telemetry [A|B] (RS485)
	4.9. RS-485-[0|1] [A|B] (28 V option only)
	4.10. Command (ASYNC)
	4.11. Telemetry (ASYNC)
	4.12. CAN[_L|_H] (CAN)
	4.13. Full- and Half-Duplex Operation
	4.13.1. 4 V Option
	4.13.2. 28 V Option

	5. Protocol Layer 2 (Data Link Layer)
	5.1. Asynchronous Serial
	5.2. CAN

	6. Protocol Layer 3 (Network Layer)
	6.1. Asynchronous Serial NSP Encapsulation
	6.2. CAN NSP Encapsulation

	7. Protocol Layer 4 (Transport Layer)
	7.1. Command and Reply
	7.2. NSP Message Format
	7.3. NSP Address
	7.3.1. 4 V NSP Addresses
	7.3.2. 28 V NSP Addresses
	7.3.3. Multicast Address

	7.4. Message Control Field
	7.5. Data Field
	7.6. Message CRC
	7.7. Error Conditions
	7.8. Command Timing

	8. Protocol Layer 5 (Session Layer)
	8.1. Operating Modes
	8.2. Self-Test Sequence
	8.3. Byte Order
	8.4. Command Codes
	8.5. PING (0x00)
	8.5.1. Command Format
	8.5.2. Reply Format

	8.6. INIT (0x01)
	8.6.1. Command Format
	8.6.2. Reply Format

	8.7. PEEK (0x02)
	8.7.1. Short Command Format
	8.7.2. Long Command Format
	8.7.3. Reply Format

	8.8. POKE (0x03)
	8.8.1. Command Format
	8.8.2. Reply Format

	8.9. DIAGNOSTIC Command (0x04)
	8.9.1. Command Format
	8.9.2. Reply Format

	8.10. STORE Command (0x05)
	8.10.1. Command Format
	8.10.2. Reply Format

	8.11. CRC Command (0x06) [Supervisor Processor Only]
	8.11.1.1. Command Format
	8.11.1.2. Reply Format

	8.12. FLASH Command (0x06) [Functional Processor Only]
	8.12.1. Read Page Buffer
	8.12.1.1. Short Command Format
	8.12.1.2. Long Command Format
	8.12.1.3. Reply Format

	8.12.2. Write Page Buffer
	8.12.2.1. Command Format
	8.12.2.2. Reply Format

	8.12.3. Erase NAND Block
	8.12.3.1. Command Format
	8.12.3.2. Reply Format

	8.12.4. Write NAND Page
	8.12.4.1. Command Format
	8.12.4.2. Reply Format

	8.12.5. Read NAND Page
	8.12.5.1. Command Format
	8.12.5.2. Reply Format

	8.12.6. Count NAND Errors
	8.12.6.1. Command Format
	8.12.6.2. Reply Format

	8.12.7. Find NAND Bad Blocks
	8.12.7.1. Command Format
	8.12.7.2. Reply Format

	8.12.8. CRC Buffer
	8.12.8.1. Command Format
	8.12.8.2. Reply Format

	8.12.9. CRC NAND
	8.12.9.1. Command Format
	8.12.9.2. Reply Format – Success
	8.12.9.3. Reply Format – Failure due to ECC error

	8.12.10. CRC RAM
	8.12.10.1. Command Format
	8.12.10.2. Reply Format

	8.12.11. Make Boot Block
	8.12.11.1. Command Format
	8.12.11.2. Reply Format

	8.12.12. Make Bit Error
	8.12.12.1. Command Format
	8.12.12.2. Reply Format

	8.12.13. Copy NAND
	8.12.13.1. Command Format
	8.12.13.2. Reply Format

	8.12.14. NAND Read Disturbance Test
	8.12.14.1. Command Format
	8.12.14.2. Successful Reply Format
	8.12.14.3. Syntax Failed Reply Format
	8.12.14.4. ECC Failed Reply Format

	8.12.15. Rewrite NAND
	8.12.15.1. Command Format
	8.12.15.2. Successful Reply Format
	8.12.15.3. Syntax Failed Reply Format
	8.12.15.4. Operation Failed Reply Format

	8.12.16. Read NAND Page Raw
	8.12.16.1. Command Format
	8.12.16.2. Reply Format

	8.12.17. Read NAND ID
	8.12.17.1. Command Format
	8.12.17.2. Reply Format

	8.12.18. Read NAND ONFI Parameters
	8.12.18.1. Command Format
	8.12.18.2. Reply Format

	8.12.19. Get NAND Feature
	8.12.19.1. Command Format
	8.12.19.1. Reply Format

	8.12.20. Set NAND Feature
	8.12.20.1. Command Format
	8.12.20.2. Reply Format

	8.12.21. Upgrade NAND ECC
	8.12.21.1. Command Format
	8.12.21.2. Reply Format

	8.12.22. Downgrade NAND ECC
	8.12.22.1. Command Format
	8.12.22.2. Reply Format

	8.12.23. Inspect NAND ECC
	8.12.23.1. Command Format
	8.12.23.2. Reply Format

	8.13. READ FILE (0x07)
	8.13.1. Short Command Format
	8.13.2. Long Command Format
	8.13.3. List Command Format
	8.13.4. Short Reply Format
	8.13.5. Long Reply Format
	8.13.6. List Reply Format

	8.14. WRITE FILE (0x08)
	8.14.1. Short Command Format
	8.14.2. Long Command Format
	8.14.3. List Command Format
	8.14.4. Short Reply Format
	8.14.5. Long Reply Format
	8.14.6. List Reply Format

	8.15. READ EDAC (0x09)
	8.15.1. Short Command Format
	8.15.2. Long Command Format
	8.15.3. Reply Format

	8.16. WRITE EDAC (0x0A)
	8.16.1. Command Format
	8.16.2. Reply Format

	8.17. GO (0x0B)
	8.17.1. Command Format
	8.17.2. Reply Format

	8.18. GATHER RESULT (0x0C)
	8.18.1. Command Format
	8.18.1.1. Gather Command Structure

	8.18.2. Result Format
	8.18.2.1. Gather Result Structure

	8.19. READ RESULT (0x0D)
	8.19.1. Short Command Format
	8.19.2. Long Command Format
	8.19.3. Reply Format

	8.20. IMAGE (0x10)
	8.20.1. Draw Rectangle Subcommand
	8.20.1.1. Command Format
	8.20.1.2. Reply Format

	8.20.2. Rectangular Poke Subcommand
	8.20.2.1. Command Format
	8.20.2.2. Reply Format

	8.20.3. Draw Ellipse Subcommand
	8.20.3.1. Command Format
	8.20.3.2. Reply Format

	8.20.4. Blank Image Buffer Subcommand
	8.20.4.1. Command Format
	8.20.4.2. Result Format

	8.20.5. Sequenced Poke Subcommand
	8.20.5.1. Normal Command Format
	8.20.5.2. Sequence Number Enquiry Command Format
	8.20.5.3. Executed Reply Format
	8.20.5.1. Duplicate Reply Format
	8.20.5.1. Failed Reply Format

	8.21. COMBINATION (0x12)
	8.21.1. Command Format
	8.21.2. Successful Reply Format
	8.21.3. Failure Reply Format

	8.22. READ TIME (0x13)
	8.22.1. Command Format
	8.22.2. Reply Format

	8.23. WRITE TIME (0x14)
	8.23.1. Command Format
	8.23.2. Reply Format

	8.24. WRITE KEPS (0x15)
	8.24.1. Command Format
	8.24.2. Reply Format

	9. Protocol Layer 6 (Presentation Layer)
	9.1. Supervisor Mapping
	9.1.1. Memory Map
	9.1.2. Diagnostics
	9.1.2.1. Reset Reason
	9.1.2.2. Reset Count
	9.1.2.3. Framing Error Count
	9.1.2.4. Runt Packet Count
	9.1.2.5. Oversize Packet Count
	9.1.2.6. Bad CRC Count
	9.1.2.7. FIFO Overflow Count

	9.1.3. EDAC Memory
	9.1.3.1. EDAC Load Source
	9.1.3.2. Asynchronous Analog Telemetry
	9.1.3.3. Synchronous Analog Telemetry
	9.1.3.4. SEU Count
	9.1.3.5. SEU Scrub Index
	9.1.3.6. Result Structure Length
	9.1.3.7. Control Structure Length
	9.1.3.8. Timeout Period
	9.1.3.9. Sample Point
	9.1.3.10. Sequence State
	9.1.3.11. Functional Processor Message
	9.1.3.12. Vdd IO Tune
	9.1.3.13. Vdd Detector Tune
	9.1.3.14. Detector Config
	9.1.3.15. Thermistor Temperature
	9.1.3.16. Time of Last GO Command
	9.1.3.17. Previous Epoch Override
	9.1.3.18. Satellite Velocity about the Earth
	9.1.3.19. Earth Velocity about the Sun
	9.1.3.20. Time
	9.1.3.21. Ephemeris Control

	9.1.4. Result Structure
	9.1.4.1. Operational Result
	9.1.4.2. Self-Test Result
	9.1.4.3. Return Code
	9.1.4.4. Hardware Telemetry Structure
	9.1.4.5. Statistics Telemetry Structure
	9.1.4.6. Image Telemetry Structure
	9.1.4.7. ERS Telemetry Structure
	9.1.4.8. Centroid Telemetry Structure
	9.1.4.9. Matching Telemetry Structure
	9.1.4.10. Analog Frame Structure

	9.2. Functional Processor Mapping
	9.2.1. Memory Map
	9.2.2. NAND Flash
	9.2.2.1. Calibration Structure
	9.2.2.2. Block Relocation Table
	9.2.2.3. Block Backup Table
	9.2.2.4. ECC Signal Page

	9.2.3. Image Buffers
	9.2.4. Control Structure
	9.2.4.1. Exposure Length
	9.2.4.2. Time Between First and Second Exposure Starts
	9.2.4.3. Functional GO bitfield
	9.2.4.4. Thumbnail Downsample
	9.2.4.5. Weighting Algorithm Control
	9.2.4.6. Heater Control
	9.2.4.7. Analog Offsets
	9.2.4.8. Thresholding raw threshold
	9.2.4.9. Thresholding Algorithm
	9.2.4.10. Centroid Window Radius
	9.2.4.11. Thresholding Bin Threshold
	9.2.4.12. Thresholding Maximum Average
	9.2.4.13. Thresholding Minimum Lit-Pixels/Star
	9.2.4.14. Thresholding Maximum Lit-Pixels/Star
	9.2.4.15. Local Gravity Vector
	9.2.4.16. ERS Matching Threshold
	9.2.4.17. Lit Pixel Limit
	9.2.4.18. Matching Max Set Multiplier
	9.2.4.19. Matching Set Stopping Threshold Multiplier
	9.2.4.20. Matching Gamma
	9.2.4.21. Matching Max Conset Error
	9.2.4.22. Matching Target Arc Length
	9.2.4.23. Time Offset Between Functional Processor t=0 and Supervisor Processor t=0
	9.2.4.24. Sequence Counter
	9.2.4.25. Spacecraft Velocity
	9.2.4.26. Previous Return Bitfield
	9.2.4.27. Previous Quaternion
	9.2.4.28. Previous Rate
	9.2.4.29. Epoch of Previous Return
	9.2.4.30. Maximum Cross-axis/About-axis Rate Change
	9.2.4.31. Maximum Age of Previous Solution
	9.2.4.32. Maximum Angle Change

	10. Operating Concept
	11. Frames of Reference and Data Definitions
	11.1. ST-16
	11.2. ST-16RT and ST-16RT2 – Chassis with Prism
	11.3. ST-16RT2 – Chassis with Polished Corners
	11.4. Sensor Frame Measurement
	11.5. Quaternion Form
	11.6. Epoch Time

	12. Flash Memory Issues
	12.1. Introduction
	12.2. Error Correcting Codes
	12.2.1. 1-bit ECC
	12.2.2. 4-bit ECC
	12.2.3. Migrating Between ECC Types

	12.3. Mitigation
	12.3.1. Periodic Flash Rebuild
	12.3.2. Run From RAM
	12.3.3. Comparison
	12.3.4. Recommendation

	12.4. Catalog Rebuild

	13. Stellar Aberration Correction
	13.1. No correction
	13.2. Lowest effort
	13.3. Osculating Elements
	13.4. Heliocentric Override

	14. Rate Estimation, Feedback and Feedforward
	14.1. Rate Output
	14.2. Rate Input
	14.3. Rate Feed-Forward

