

Rev. 2.0, June 28, 2021,
Doug Sinclair, Cordell Grant

1 Revision Notes .. 7
2 Scope ... 7

3 Mechanical .. 8
3.1 RW3-0.06 Mechanicals .. 8

3.1.1 Mechanical Drawings ... 8
3.1.1 Top View ... 8
3.1.1.1 Side View .. 9

3.1.1.2 Front View ... 9

3.1.1.3 Bottom View.. 10
3.1.1.4 Back View ... 11

3.1.2 Mass Properties ... 11
3.1.3 Remove Before Flight ... 11

4 Environmental ... 13

4.1 Storage .. 13

4.2 Thermal .. 13
4.3 Pressure .. 13
4.4 Vibration... 13

5 Electrical ... 14
5.1 Micro-D .. 14

5.2 Programming Header ... 14
6 Signals ... 15

6.1 Address [0|1] .. 15
6.2 CAN_A[H|L], CAN_B[H|L] .. 15

6.3 RS485_0[A|B], RS485_1[A|B] .. 15
6.4 V+[A|B] .. 15

6.5 GND ... 16
6.6 RW3-0.06 Power Architecture ... 16
6.7 Regenerative Braking ... 17

6.8 Bus Voltage Transient .. 17
7 Protocol Layer 2 (Data Link Layer).. 19

7.1 Asynchronous Serial .. 19

7.2 CAN ... 19
8 Protocol Layer 3 (Network Layer) .. 20

8.1 Asynchronous Serial NSP Encapsulation .. 20
8.2 CAN NSP Encapsulation ... 20

8.2.1 Redundant CAN Bus Selection ... 20

8.2.2 CAN Object IDs .. 20
8.2.3 Expedited Telecommands ... 21

8.2.4 Expedited Telemetry ... 21
8.2.5 Standard Transfers .. 22

8.2.5.1 Start Message ... 22
8.2.5.2 Continuation Message ... 23

8.2.5.3 Acknowledge Message .. 23

8.2.5.4 Network Management Message .. 25

9 Protocol Layer 4 (Transport Layer) .. 27

9.1 Command and Reply .. 27
9.2 NSP Message Format ... 27
9.3 NSP Addresses ... 27

9.4 Wheel Address and Port Selection ... 28
9.5 Default Addressing ... 28
9.6 Message Control Field ... 29
9.7 Data Field ... 30
9.8 Message CRC ... 30

9.9 Error Conditions ... 30

10 Protocol Layer 5 (Session Layer) ... 31
10.1 Operating Modes .. 31

10.1.1 Bootloader to Application Transition ... 31
10.1.2 Application to Bootloader Transition ... 31

10.2 Power Switch Sequence.. 31

10.2.1 Power Switch Sequence, Rev 8 and Earlier .. 31

10.2.2 Power Switch Sequence, Rev 9 and Later .. 31
10.3 Test Scripts ... 31
10.4 Byte Order .. 32

10.5 Command Codes... 32
10.6 PING (0x00) ... 32

10.6.1 Command Format ... 32
10.6.2 Reply Format .. 32

10.7 INIT (0x01)... 32
10.7.1 Command Format ... 33

10.7.2 Reply Format .. 33
10.8 PEEK (0x02)... 33

10.8.1 Short Command Format .. 33
10.8.2 Long Command Format .. 33
10.8.3 Reply Format .. 33

10.9 POKE (0x03) .. 33
10.9.1 Command Format ... 34

10.9.2 Reply Format .. 34

10.10 DIAGNOSTIC (0x04) .. 34
10.10.1 Command Format .. 34

10.10.2 Reply Format ... 34
10.11 CRC (0x06)... 34

10.11.1.1 Command Format ... 34

10.11.1.2 Reply Format .. 34
10.12 READ FILE (0x07) .. 35

10.12.1 Command Format .. 35
10.12.2 Reply Format ... 35

10.12.2.1 Mode Reply Structure .. 35
10.12.2.2 Normal Reply Structure ... 35

10.13 WRITE FILE (0x08) .. 35

10.13.1 Command Format .. 36

10.13.1.1 Mode Store Structure ... 36

10.13.1.2 Normal Store Structure... 36
10.13.1 Reply Format ... 36

10.13.1.1 Mode Reply Structure .. 36

10.13.1.2 Normal Reply Structure ... 36
10.14 READ EDAC (0x09) .. 36

10.14.1 Short Command Format .. 36
10.14.2 Long Command Format .. 36
10.14.3 Reply Format ... 36

10.15 WRITE EDAC (0x0A) ... 37

10.15.1 Command Format .. 37
10.15.2 Reply Format ... 37

10.16 GATHER EDAC (0X0B) ... 37
10.16.1 Command Format .. 37

10.16.1.1 Gather Command Structure .. 37

10.16.1 Result Format .. 37

10.16.1.1 Gather Result Structure .. 37
11 Protocol Layer 6 (Presentation Layer) .. 38

11.1 Memory Map .. 38

11.2 Diagnostics ... 38
11.2.1 Reset Reason ... 39

11.2.2 Reset Count ... 39
11.2.3 Framing Error.. 40
11.2.4 Runt Packet ... 40
11.2.5 Oversize Packet ... 40

11.2.6 Bad CRC ... 40
11.2.7 FIFO Overflow.. 40

11.3 EDAC Memory... 40
11.3.1 Command Value ... 44
11.3.2 VA ... 44

11.3.3 PHASE_COMMON ... 44
11.3.4 8V .. 44

11.3.5 VDD, VCC .. 44

11.3.6 CURRENT_PHASE[0|1|2] ... 44
11.3.7 TEMP[0] ... 45

11.3.8 TEMP[2|3] .. 45
11.3.9 TEMP4 .. 45
11.3.10 SPEED ... 45

11.3.11 MOMENTUM ... 45
11.3.12 SCRUB_INDEX ... 46

11.3.13 SEU_COUNT.. 46
11.3.14 BUS_STATUS .. 46
11.3.15 PWM ... 46
11.3.16 HALL_DIGITAL .. 46

11.3.17 CONTROL_TIME .. 47

11.3.18 OSCILLATOR_CALIBRATE.. 47

11.3.19 TARGET_CURRENT .. 47

11.3.20 MEASURED_CURRENT .. 47
11.3.21 SPEED_[P|I|D]_GAIN .. 47
11.3.22 ADC_[I|P]_GAIN ... 48

11.3.23 MIN_GAIN_SPEED, MAX_GAIN_SPEED ... 48
11.3.24 TEST_TONE ... 48
11.3.25 INERTIA ... 48
11.3.26 MOTOR_KT ... 48
11.3.27 GAIN_SCHEDULE[1..4] ... 48

11.3.28 PROPORTIONAL_OVERRIDE .. 49

11.3.29 CONTROL_TYPE .. 49
11.3.30 BUS_MIN_THRESHOLD, BUS_MAX_THRESHOLD 49
11.3.31 MAX_SPEED_AGE ... 49
11.3.32 LIMIT_SPEED1.. 49

11.3.33 LIMIT_SPEED2.. 50

11.3.34 LIMIT_CURRENT ... 50

11.3.35 TURNON_RATE .. 50
11.3.36 OSCILLATOR_TOLERANCE .. 50
11.3.37 CURRENT_BYPASS, BYPASS_GAIN, BYPASS_STEP.................... 50

11.3.38 SINUSOID_[PHASE, FREQ, OFFSET] .. 51
11.3.39 PREVIOUS_SPEED ... 51

11.3.40 SPEED_INTEGRATOR ... 51
11.3.41 SPEED_LAST_ERROR ... 52
11.3.42 ACCEL_TARGET .. 52
11.3.43 HALL_TRANSITION .. 52

11.3.44 TORQUE_[T0..T4] ... 52
11.3.45 SFFT_STEP_NUMBER ... 52

11.3.46 SFFT_STEP_TIMER .. 52
11.3.47 SFFT_TELEM_COUNT ... 52
11.3.48 CRC ... 53

11.3.49 LOAD_SOURCE .. 53
11.3.50 MODE ... 53

11.3.51 Startup I/O, Floating I/O ... 53

11.3.52 HALL_IMPOSSIBLE ... 53
11.3.53 HALL_SKIP.. 53

11.3.54 CONTROL_OVERFLOW .. 53
11.3.55 SPEED_TABLE_SIZE ... 53
11.3.56 USED_TABLE_SIZE ... 54

11.3.57 SMBUS_ABORT .. 54
11.3.58 SMBUS_TIMEOUT ... 54

11.3.59 SMBUS_STOP.. 54
11.3.60 IDLE_INHIBIT ... 54
11.3.61 REALTIME_DELAY ... 54
11.3.62 TEMPSENSE_INHIBIT ... 54

11.3.63 BUSOFF_REASON .. 55

11.3.64 ANALOG_HALL_DISABLE .. 55

11.3.65 ADC_REGISTER_REFRESH .. 55

11.3.66 CURRENT_FILTER, CURRENT_IIR_CONSTANT,

CURRENT_THRESHOLD .. 55
11.3.67 VOLTAGE_FILTER, VOLTAGE_IIR_CONSTANT,

VOLTAGE_THRESHOLD .. 56
11.4 Command Modes .. 56

11.4.1 IDLE ... 57
11.4.2 PWM ... 57
11.4.3 CURRENT .. 58

11.4.4 SPEED .. 58

11.4.5 PWM_H[1..6] ... 58
11.4.6 CURRENT_H[1..6] .. 58
11.4.7 ACCEL ... 58
11.4.8 MOMENTUM .. 58

11.4.9 TORQUE .. 58

11.4.10 BURNIN.. 58

11.4.11 SFFT .. 59
11.4.12 LIFE .. 59
11.4.13 STORE_FILES.. 59

11.4.14 DEFAULT_FILES .. 59
11.4.15 PWM_P[0..2] .. 59

11.4.16 SWITCH_OFF .. 59
11.4.17 SWITCH_[A|B]... 59
11.4.18 SWITCH_HIGHEST .. 59
11.4.19 SOAK .. 60

11.4.20 REPEAT .. 60
11.4.21 COMPLETE .. 60

11.4.22 TORQUE_TEST ... 60
11.4.23 CURRENT_TEST ... 60
11.4.24 AUX1, AUX2.. 60

11.4.25 BRAKE ... 60
11.4.26 BRAKE_H[1..6] .. 60

11.4.27 BLEND.. 61

11.4.28 BLEND_H[1..6] .. 61
11.4.29 SINUSOID .. 61

1 Revision Notes
This revision of the document contains the following changes relative to the previously

released version (1.14):

• Removed RW3-1.0 content as it has been superseded by the RW4-1.0

• Removed most references to electronics versions older than Rev 8.

• Ported addressing section (9.5) from “RW3-0.06 Addressing” document.

2 Scope
This document details the mechanical, electrical and software interfaces for the third

generation Sinclair Interplanetary reaction wheels. At present these include:

• RW3-0.06-28-RS485

• RW3-0.06-28-RS485+CAN

3 Mechanical

3.1 RW3-0.06 Mechanicals

3.1.1 Mechanical Drawings

The following drawings refer to all units made with “Rev 8 RS485” electronics, and all

units fabricated in 2016 and onwards. For earlier revisions, please consult the factory for

the appropriate revisions of the ICD.

3.1.1 Top View

26

32,5

39

77

26 32
,5 39

65

M3 Helicoil Insert x 4
Hole Depth = THRU (5.5 mm)
Thread Depth = 4.5 mm

Figure 1: RW3-0.06 Top View

The X and Y axes are defined as shown in the figure. The Z-axis (illustrated in the

following figures) completes the right-handed set. The rotation arrow shows the direction

of wheel rotation that is considered positive speed. Rotation in the opposite direction is

considered negative wheel speed.

The four holes in the top of the structure may be used by the customer to affix covers or

other features. Take care not to use a fastener that is too long or it may protrude through

the hole and contact the rotor.

+X

+Y

Positive

wheel

rotation

3.1.1.1 Side View

65

72,6

21
,1

37
,5

Figure 2: RW3-0.06 Side View

The overall height dimension (37.5 mm) is slightly variable from wheel to wheel due to

the particular shimming of each part. When fitting a cover or other feature that must

engage holes in both the top and front or back faces be sure that the mating holes are

sufficiently oversized. Shimming tolerance is ±0.2 mm.

3.1.1.2 Front View

19

3,5

61,5

M3 Helicoil Insert x 2
Hole Depth = THRU (7 mm)
Thread Depth = 4.5 mm

Figure 3: RW3-0.06 Front View

+X

+Z

+Y

+Z

The two holes illustrated in this view may be used by the customer to affix covers or

harness retaining features. Take care not to use a fastener that is too long or it may protrude

through the hole and contact the rotor.

3.1.1.3 Bottom View

7

58

3,5

61,5

7

58

70,24

3,
5

45°

Mounting Bosses
Raised by 0.5 mm

M3 Helicoil Insert x 4
Hole Depth = 10 mm
Thread Depth = 6 mm

Figure 4: RW3-0.06 Bottom View

This view shows the bottom view of the wheel. This is the preferred mounting surface.

There are four mounting bosses, each with a threaded hole to accept a fastener from below.

The bosses are slightly taller than the rest of the wheel structure. This permits mounting

on plates that may not be completely flat.

Be very careful not to over-torque the mounting screws. They thread into blind holes, and

removing snapped fasteners is a difficult and expensive process.

+X

+Y

3.1.1.4 Back View

3,5

61,5

19

M3 Helicoil Insert x 2
Hole Depth = THRU (7 mm)
Thread Depth = 4.5 mm

Figure 5: RW3-0.06 Back View

The two holes illustrated in this view may be used by the customer to affix covers or

harness retaining features. Take care not to use a fastener that is too long or it may protrude

through the hole and contact the rotor.

3.1.2 Mass Properties
Table 1: RW3-0.06 Mass Properties

Total Mass < 0.235 kg

Rotating Mass 0.112 kg

CG Location 19.5 mm above mounting plane

2.1 mm forward (+X) of spin axis

Table 2: RW3-0.06 Moments of Inertia

 Ixx Iyy Izz

Rotor Inertia 5.98 x 10-5 kg-m2 5.98 x 10-5 kg-m2 8.66 x 10-5 kg-m2

Inertia of Wheel Minus Rotor 7.55 x 10-5 kg-m2 9.30 x 10-5 kg-m2 8.86 x 10-5 kg-m2

Inertia of Wheel with Rotor

Locked

1.79 x 10-4 kg-m2 1.97 x 10-4 kg-m2 1.75 x 10-4 kg-m2

3.1.3 Remove Before Flight

The following items may be removed before flight:
Table 3: RW-1.0 Remove Before Flight Items

Item Remove? Notes

Connector dust cover Must remove

+Y

+Z

Connector saver Should remove if

fitted

Remove with 1/8” wrench, or

specially modified 1/8” nut

driver

Kapton tape over bearings May remove If the spacecraft is clean, this

may be removed to assist in

quick venting on launch. If

spacecraft is at all dusty, fly

these covers.

4 Environmental

4.1 Storage

The wheel must be stored in a clean environment to keep dust out of the bearings. The

humidity must be kept low to prevent corrosion of the steel rotor. The wheel may be stored

in a sealed bag with desiccant.

4.2 Thermal
Table 4: Allowable Temperature Range

Survival Temperature -40C to +125C

Operating Temperature (short term) -40C to +100C at interface

Operating Temperature (long term) -20C to +70C at interface

Table 4 shows the allowed temperature range for the wheel. Short term operating

temperatures are permitted for periods of hours to days, while long term operating

temperatures are permitted for the many years of a mission.

4.3 Pressure

The wheel will operate in sea-level atmosphere and in hard vacuum. It has not been

qualified to operate at high altitude atmospheres, and should not be powered during ascent

unless additional testing is performed to show that there is no danger of arcing.

All materials meet the standard outgassing requirements of TML < 1%, CVCM < 0.1%.

4.4 Vibration

The wheel is designed to survive typical launch environments. It has been qualified to

NASA GEVS levels (14.1 Grms for 2 mins/axis).

5 Electrical

5.1 Micro-D

The RW3-0.06 is fitted with a 9-socket micro-D connector.

Table 5: RW3-0.06 dual RS485 Micro-D Connector Pinout

Pin Name

1 GND

2 RS485_1_A

3 RS485_0_A

4 GND

5 Address 0

6 V+A

7 RS485_1_B

8 RS485_0_B

9 V+A

Table 6: RW3-0.06 RS485+CAN Micro-D Connector Pinout

Pin Name

1 GND

2 CAN_AH

3 RS485_0_A

4 GND

5 Address 0

6 V+A

7 CAN_AL

8 RS485_0_B

9 V+A

5.2 Programming Header

The RW3-0.06 has two holes in the PCB. For Rev 8 and earlier, these are fitted with silver-

plated turret terminals. For Rev 9 and later they are simply gold-plated vias. These are for

factory use, and allow the processor bootloader to be programmed. Customers should not

use these without explicit factory advice.

6 Signals

6.1 Address [0|1]
Table 7: Address Input Electrical Specifications

Absolute Maximum, RW3-0.06 -50 V to +75 V, WRT Power Ground

The address input(s) allow the default network address of the wheel to be set. Depending

on the exact wheel model, the pins may be strapped high, or low, or left open, or even

connected to GND via resistors or diodes to set different behaviours. Consult the unit-

specific EIDP for details.

6.2 CAN_A[H|L], CAN_B[H|L]
Table 8: CAN Electrical Specifications

Absolute Maximum -36 V to +36 V, each signal, WRT Power Ground

ESD rating ±16 kV (Human-body model)

Input Common Mode Range -7 V to +12 V

Dominant Input Voltage VCANH – VCANL = 0.9 V to 3.3 V

Recessive Input Voltage VCANH – VCANL = -1.0 V to +0.5 V

Input Hysteresis 0.1 V typ

Dominant Output Voltage VCANH – VCANL > 2.3 V into 60 Ω load (28V)

Slew Rate Configurable – Contact factory

Termination Resistor Configurable – Contact factory

Each pair is CAN bus. Each pair features a common-mode filter. CAN buses may share

pins with RS485 buses. The wheel has only one CAN controller, so even if two CAN buses

are provided only one will be active at a time.

6.3 RS485_0[A|B], RS485_1[A|B]
Table 9: RS485 Electrical Specifications

Absolute Maximum -70 V to +70 V, each signal, WRT Power Ground

ESD rating ±16 kV (Human-body model)

Polarity B > A in Mark (Idle) state

A > B in Space (ON) state

Differential Output Voltage > 1 V into 54  termination.

Short-circuit Output Current 200 mA max

Input Resistance > 96 k each signal to Power Ground

Input Differential Threshold -0.18 V to -0.035 V

Three-State Output Current ± 100 A max

Each pair is an RS485 signal. They may be used as two half-duplex 2-wire buses, or used

together as a 4-wire bus. RS485 buses may share pins with CAN buses.

6.4 V+[A|B]
Table 10: V+ Electrical Specifications

Absolute Maximum, RW3-0.06 -60 V to +60 V, WRT Power Ground

Operating Range, RW3-0.06 +3.5 V to +36 V

All wheels have a power input line V+A. Some wheels also have a second power input

V+B. Each power line may have multiple connector pins wired together for greater current

carrying.

6.5 GND

There are multiple pins allocated to GND. This is the power ground signal. It is connected

to chassis via 1 MΩ and 100 nF. GND is the return for the V+[A|B] signals, and is used

as the reference for the Address[0|1] signals. All of the communications signals are

differential, and do not use GND.

6.6 RW3-0.06 Power Architecture

Figure 6: RW3-0.06 Rev 8 and Earlier Power Architecture

Figure 7: RW3-0.06 Rev 9 and Later Power Architecture

V+A

GND

EMI

Filter To motor

drive

+9 V

+5 V

+3.3 V

DC/DC

1 MΩ +

100 nF

Switch A

V+A

GND

EMI

Filter To motor

drive

+9 V

+5 V

+3.3 V

DC/DC

1 MΩ +

100 nF

The RW3-0.06 has a simpler power architecture with only one power input. All of the

voltage rails are produced by DC/DC conversion, giving greater efficiency.

The rev 8 and prior retains a switch in series with the motor drive, there is a parallel diode

that ensures that the motor drive is always powered. Its purpose is to prevent unwanted

regeneration when a quickly spinning wheel is turned off.

The rev 9 and later electronics dispense with the switch. The motor drive is always

powered, and always able to regenerate.

6.7 Regenerative Braking

The wheel makes use of regenerative braking when slowing the rotor under moderate

torque. This will result in the wheel consuming a net negative amount of power, pushing

current back out onto the spacecraft power bus. The spacecraft power system design must

be able to deal with this.

In an emergency, if the power line becomes disconnected from the power system (such as

if turned off via a relay switch) regeneration will increase the voltage at the wheel until the

~52 V safety threshold is reached. This will cause the wheel to reset and cease

regeneration.

The wheel will never regenerate when the internal power switches (if present) are turned

off. Special software modes exist (BLEND, or CURRENT_BYPASS < 0.0) to minimize

regeneration.

6.8 Bus Voltage Transient
Table 11: Allowed Bus Voltage Slope, Single Step

Electronics Revision Maximum Bus Voltage Slope

RW3-0.06 of Rev 9B Unlimited

RW3-0.06 of Rev 9 120000 V/sec

All other RW3 40000 V/sec

The maximum rate of bus voltage transient must be controlled to avoid damage to the

reaction wheel. This primarily applies to turn-on steps, but could also manifest in steps

while operating or in external short-circuit or crowbar events. Table 11 shows the

allowable slope for a single-direction step, such as a transition from 0 to 28 V.

Figure 8: Allowed Bus Voltage Ripple, Sustained

Figure 8 shows the sustained ripple on the bus that is permitted. It is derived from a

SPICE simulation, and makes the following assumptions:

• The limiting factor is heat dissipation in the damping resistors.

• Resistor nominal ratings are used without derating

• For continual operation, to derate power to 50%, subtract 3 dB from allowed

limit.

• For < 5 seconds short-term overdrive operation, add 8 dB to allowed limit.

• For curves without LISN, a zero-impedance power supply is assumed.

• For curves with a LISN, the LISN from Figure 6 of MIL-STD-461F is assumed.

The RW3-0.06 revision 9B electronics pass the CS101 curve #2 requirements. The other

revisions do not, though the revision 9 electronics are more robust than all prior versions.

The wheel has been tested to CS106, and is known to be tolerant to those short transients.

90

100

110

120

130

140

150

160

1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

V
o

lt
ag

e
 (

d
B

u
V

rm
s)

Frequency (Hz)

Input Voltage Ripple Tolerance Compared to MIL-STD-461
CS101

RW3-0.06 Rev 8 and earlier
without LISN

RW3-0.06 Rev 8 and earlier with
LISN

RW3-0.06 Rev 9 without LISN

RW3-0.06 Rev 9 with LISN

RW3-0.06 Rev 9B without LISN

RW3-0.06 Rev 9B with LISN

RW3-1.0 Rev 1 without LISN

CS101 Curve #2

7 Protocol Layer 2 (Data Link Layer)

7.1 Asynchronous Serial

The RS485 communications ports use an asynchronous serial protocol. The parameters

are programmed into the unit bootloader at the factory, and special-order units with

different parameters are available.

Table 12: Default Asynchronous Serial Parameters

Nominal Baud Rate See EIDP

Data bits per byte 8

Parity None

Stop bits 1

Each word begins with a start bit with space (0) value. Eight data bits follow, with the LSB

sent first and the MSB last. Finally, a stop bit is sent with mark (1) value. Once the stop

bit has concluded the output transmitter may be disabled if there are no further words to

follow.

The actual output baud rate may deviate slightly from the nominal due to inaccuracies in

the wheel master oscillator. Wheels typically use a silicon oscillator with 0.5% tolerance

in bootloader mode. They may shift to a very accurate MEMS oscillator in application

mode. See the EIDP to determine whether a MEMS oscillator is installed in your device.

7.2 CAN

Some wheels are fitted with a CAN communications port. The ISO 11898 CAN protocol

is used. See the EIDP for information on CAN baud rate.

8 Protocol Layer 3 (Network Layer)
NSP is the Nanosatellite Protocol, originally developed at UTIAS/SFL for use on the CanX

nanosatellites. This in turn is descended from the Simple Serial Protocol (SSP) used by

UTIAS/SFL and Dynacon on the MOST and CHIPSAT spacecraft as well as the Dynacon

reaction wheels in the wider market.

The reaction wheel uses NSP messages for all communication.

8.1 Asynchronous Serial NSP Encapsulation

NSP messages are encapsulated for transmission on an asynchronous serial channel using

SLIP framing, as described in RFC 1055. This is required in order to indicate the beginning

and end of NSP messages.

Table 13: SLIP Framing Special Characters

FEND 0xC0

FESC 0xDB

TFEND 0xDC

TFSEC 0xDD

Each NSP message is transmitted with a FEND character added to the beginning and end.

Whenever FEND would occur within the message it is replaced by two bytes: FESC

TFEND. Whenever FESC would occur within the message it is replaced by FESC TFESC.

8.2 CAN NSP Encapsulation

NSP messages are encapsulated for traffic over a CAN bus using a proprietary protocol

which borrows heavily from CANopen. It is intended to coexist with other spacecraft CAN

traffic on the bus which may be using CANopen, or any other protocol. It has the following

features to accomplish this goal:

• Minimal usage of CAN Object IDs

• Controlled maximum CAN message length, to preserve bus latency for time critical

applications.

• Bus throttling, to preserve bus bandwidth for rate critical applications.

8.2.1 Redundant CAN Bus Selection

Some hardware has redundant CAN bus physical layers. The logic for switching a single

CAN controller between multiple physical layers is TBD.

8.2.2 CAN Object IDs
Table 14: CAN Receive Messages

Receive Message CAN Object ID

Expedited Telecommand 1 0x200 + Unit NSP Address

Expedited Telecommand 2 0x300 + Unit NSP Address

Standard Receive 0x400 + Unit NSP Address

The table above shows the three CAN messages that a unit will receive. These map

exactly to the default RPDO COB-IDs for CANopen.

It is not permitted for two messages with the same object ID to collide on the CAN

network, so each message must have only a single source. A unit can receive expedited

telecommands from two nodes, and standard telecommands from a third. This is

sufficient for most spacecraft architectures.

Table 15: CAN Transmit Messages

Transmit Message CAN Object ID

Expedited Telemetry 0x180 + Unit NSP Address

Standard Transmit 0x380 + Unit NSP Address

The table above shows the two CAN messages that a unit will transmit. These map exactly

to the default TPDO COB-IDs for CANopen.

8.2.3 Expedited Telecommands

An expedited telecommand encapsulates an entire short NSP message within a single

CAN message. Telecommands are sent from the spacecraft computer to Sinclair

Interplanetary units.

Table 16: Expedited Telecommand Message Format

Message Type Data frame, 11-bit identifier

Length 2 to 8 bytes

CAN Object ID 0x200 + NSP Destination Address

Or 0x300 + NSP Destination Address

Data Byte 0 NSP Source Address

Data Byte 1 NSP Message Control Field

Data Bytes 2 - 8 NSP Data Field

The expedited telecommand message is only as long as is required. The shortest possible

message, carrying an NSP message with no data field, has a data length of 2. The longest

possible message has a data length of 8, carrying an NSP message with 6 bytes of data

field.

The NSP destination address is not carried within the message data, but can be inferred

from the CAN object ID. The NSP message CRC is not carried – the CAN message

carries its own CRC which is sufficient to protect against corruption.

8.2.4 Expedited Telemetry

Analogous to expedited telecommand messages, expedited telemetry encapsulates a

single NSP message within a CAN message. Telemetry is sent from Sinclair

Interplanetary units to the spacecraft computer.
Table 17: Expedited Telecommand Message Format

Message Type Data frame, 11-bit identifier

Length 2 to 8 bytes

CAN Object ID 0x180 + NSP Source Address

Data Byte 0 NSP Destination Address

Data Byte 1 NSP Message Control Field

Data Bytes 2 - 7 NSP Data Field

The expedited telemetry message is only as long as is required. The shortest possible

message, carrying an NSP message with no data field, has a data length of 2. The longest

possible message has a data length of 8, carrying an NSP message with 6 bytes of data

field.

The NSP source address is not carried within the message data, but can be inferred from

the CAN object ID. The NSP message CRC is not carried – the CAN message carries its

own CRC which is sufficient to protect against corruption.

8.2.5 Standard Transfers

Standard transfers allow NSP messages of arbitrary sizes to be split into a sequence of

CAN messages and later reassembled. Standard transfers are symmetric, in that the

telemetry and telecommand interfaces are identical.

There are no explicit timing requirements. The acknowledgement mechanism allows for

flow control. The receiving unit may delay sending acknowledgements until it is ready to

receive more data. Either the transmitting or receiving unit may delay sending CAN

messages to control the load on the spacecraft bus.

The message length used is configurable through the network management message. The

entire protocol can be conducted with CAN messages of only 2 bytes of data if it is

desired to minimize the worst-case latency of the spacecraft bus. Of course, 8 byte

messages give the lowest protocol overhead.

Standard transfers can accommodate NSP messages with any source and destination

address. This opens the possibility of future implementations conducting packet routing.

Flow-control provisions anticipate wormhole routing to slower networks.

8.2.5.1 Start Message
Table 18: Start Message Format

Message Type Data frame, 11-bit identifier

Length 2 to 8 bytes

CAN Object ID 0x400 + Unit NSP Address [into unit]

0x380 + Unit NSP Address [out of unit]

Data Byte 0 Bits 6-7 (MSB) 0x00

Bit 5 Final

Bits 0-4 (LSB) Reserved

Data Byte 1 NSP Destination Address

Data Bytes 2 - 7 Subsequent bytes from NSP message

A start message begins an NSP transfer. At a minimum it contains the NSP destination

address. It may optionally contain 6 more bytes of NSP message.

The Final bit is set if the start message holds the entire NSP message. The longest NSP

message that can be held has 2 bytes of data field, plus destination and source address,

message control, and 2 bytes of NSP CRC. If the final bit is clear there is the expectation

that the rest of the message will subsequently be sent in one or more continued messages.

A start message will be acknowledged with an acknowledge message.

8.2.5.2 Continuation Message
Table 19: Continuation Message Format

Message Type Data frame, 11-bit identifier

Length 2 to 8 bytes

CAN Object ID 0x400 + Unit NSP Address [into unit]

0x380 + Unit NSP Address [out of unit]

Data Byte 0 Bits 6-7 (MSB) 0x01

Bit 5 Final

Bits 0-4 (LSB) Sequence Number

Data Bytes 1 - 7 Subsequent bytes from NSP message

A continuation message continues an NSP transfer that was begun with a start message.

Each continuation message can contain up to 7 bytes of the NSP message.

The Final bit is set if this is the last CAN message of the NSP message.

The first continuation message has a sequence number of 1. Each subsequent

continuation message increments the sequence number, up to a maximum value of 31.

Following this, the next continuation message has a sequence number of 1, and the next 2

and so-on. The sequence number must never be 0 – this is reserved as the implicit

sequence number for a start message.

8.2.5.3 Acknowledge Message
Table 20: Acknowledge Message Format

Message Type Data frame, 11-bit identifier

Length 2 bytes

CAN Object ID 0x400 + Unit NSP Address [into unit]

0x380 + Unit NSP Address [out of unit]

Data Byte 0 Bits 6-7 (MSB) 0x02

Bit 5 Management

Bits 0-4 (LSB) Sequence Number

Data Byte 1 Bits 3-7 (MSB) Status

Bits 0-2 (LSB) Allowed count

An acknowledgement message may be sent in response to a start, continued or network

management message.

In response to a start message, the Management bit will be cleared and the sequence

number will be zero. In response to a continued message, the Management bit will be

cleared and the Sequence Number will be equal to the sequence number of the last

continued message. In response to a network management message the Management bit

will be set, and the Sequence Number will contain the current network settings in the

same format as sent in the network management message.

The five-bit status field encodes the following possible results:
Table 21: Acknowledge Status Codes

Status Code Meaning

0 Message successfully received, all is good

1 Start message received, aborting previous unfinished incoming

message

2 Start message received while part-way through outgoing message. Unit

is incapable of full-duplex. Outgoing message aborted, and incoming

message can continue.

3 Continuation message received without start. Abort.

4 Continuation message received with sequence error. Abort.

5 Continuation message received after expedited telecommand received.

Expedited telecommand has overwritten the unfinished incoming

message. Abort.

6 I cannot handle messages with this destination address. Abort.

7 Final message received, but overall NSP CRC invalid. Abort.

8 Continuation message received. NSP message buffer overflow. Abort.

9 A message has been received with at least one byte of data, but not the

number of data bytes expected.

10+ Reserved

The three-bit allowed count field encodes the following possible results:

Allowed Count Meaning

0 Do not send any more continuation messages. This transaction is

either complete, or aborted.

1 Send one continuation message and then wait for my

acknowledgement.

2 Send up to 2 continuation messages and then wait for my

acknowledgement. I will acknowledge the 2nd message, or the final

message, or any error, whichever comes first.

3 Send up to 4 continuation messages and then wait for my

acknowledgement. I will acknowledge the 4th message, or the final

message, or any error, whichever comes first.

4 Send up to 8 continuation messages and then wait for my

acknowledgement. I will acknowledge the 8th message, or the final

message, or any error, whichever comes first.

5 Send up to 16 continuation messages and then wait for my

acknowledgement. I will acknowledge the 16th message, or the

final message, or any error, whichever comes first.

6 Send up to 32 continuation messages and then wait for my

acknowledgement. I will acknowledge the 32nd message, or the

final message, or any error, whichever comes first.

7 Send as many continuation messages as desired. I will acknowledge

the final message, or any error, whichever comes first.

8.2.5.4 Network Management Message
Table 22: Acknowledge Message Format

Message Type Data frame, 11-bit identifier

Length 1 byte

CAN Object ID 0x400 + Unit NSP Address [into unit]

0x380 + Unit NSP Address [out of unit]

Data Byte 0 Bits 6-7 (MSB) 0x03

Bit 5 Write

Bit 4 Reserved

Bit 3 Use Expedited

Bits 0-2 (LSB) Max DLC

The network management message is sent to control the network behaviour of a node. It

does not contain any portion of an NSP message.

If the Write bit is set, the node’s settings are updated based on the contents of this

message. If the Write bit is clear the node’s settings are unchanged. Clearing the Write

bit can be used to read back the node’s settings in the resulting acknowledge message, or

just as a network level aliveness ping.

If the Use Expedited bit is set, then the node will encapsulate outgoing NSP messages in

expedited telecommand/telemetry packets when possible, subject to the Max DLC

setting. If the Use Expedited bit is clear, then the node will send all outgoing NSP

messages using standard encapsulation.

The 3-bit Max DLC field controls the maximum length of CAN message that the unit is

allowed to send.
Table 23: Max DLC Field Meaning

Max DLC Field Meaning

0 The unit is prohibited from sending any CAN messages. There

will be no acknowledgement.

1 The unit is allowed to send CAN messages with up to 2 bytes of

data.

2 The unit is allowed to send CAN messages with up to 3 bytes of

data.

3 The unit is allowed to send CAN messages with up to 4 bytes of

data.

4 The unit is allowed to send CAN messages with up to 5 bytes of

data.

5 The unit is allowed to send CAN messages with up to 6 bytes of

data.

6 The unit is allowed to send CAN messages with up to 7 bytes of

data

7 The unit is allowed to send CAN messages of any length

A unit is not required to obey a network management message. It should send back its

actual settings in the acknowledge message.

9 Protocol Layer 4 (Transport Layer)

9.1 Command and Reply

The wheel generates telemetry messages in response to command messages received. In

the usual case, a single telemetry message will be sent as quickly as possible after reception

of the command.

Some commands will take a period of time to execute, and will only generate a telemetry

message when they are complete. The wheel should be considered to own the

communications bus while such a command is executed, so do not send additional

commands to it or any other unit until the reply is complete.

Some commands may generate more data than can be fit into a single telemetry message.

In this case a sequence of telemetry messages will be sent back-to-back to carry the

required data. The last message will be indicated using the P/F bit.

Nonwithstanding the above, the wheel will not generate messages that are not linked to a

command. The host spacecraft must poll it to determine its status and to read telemetry.

9.2 NSP Message Format
Table 24: NSP Message Fields

Length Field

1 byte Destination Address

1 byte Source Address

1 byte Message Control Field

0 or more bytes Data Field

2 bytes Message CRC

Each NSP message has the format shown above. The shortest possible messages are 5

bytes (with zero data, not counting framing).

The wheel bootloader supports a maximum data length of 516 bytes, giving a total message

length of 521 bytes. The wheel application program supports a maximum data length of

1028 bytes, giving a total message length of 1033 bytes.

Note that network-layer framing may add additional bytes to the message as it is

transmitted.

9.3 NSP Addresses

All NSP messages contain a destination and a source address. A reply message will be

sent with a destination address equal to the source address of its command message.

Similarly, the source address will be set equal to the destination address from the command.

The user is free to pick one or more NSP addresses for flight computers and other units

that may talk to the wheel. Avoid choosing the SLIP framing characters FEND (0xC0)

and FESC (0xDB), as well as the reserved address 0x00. By convention the flight computer

would normally use NSP address 0x11.

The wheel pays no particular attention to the source address of commands, and will accept

commands from any unit on the bus.

9.4 Wheel Address and Port Selection

The wheel bootloader may support incoming communication on a number of

communication ports: potentially up to two RS485 ports and two CAN ports. In addition,

there may be cases where outgoing reply packets are sent on a different port from the

command packet. For example, a 4-wire RS485 link can be implemented by receiving

commands on one 2-wire RS485 port and sending replies on a different 2-wire RS485 port.

A wheel may respond to different NSP addresses on different ports. On any given port,

incoming commands with different NSP addresses may cause replies to be issued on

different ports. See the unit-specific EIDP for full information on the available ports and

their addresses.

When the bootloader starts the application program the configuration is frozen. The port

that received the INIT command is now the only port that is monitored for commands, and

all replies will be sent to the appropriate reply port. The application program will only

respond to the NSP address that the INIT was sent to.

It is intended that the bootloader only receive commands on one port at a time. Multiple

incoming commands will be serviced on a best-effort basis, but there may be insufficient

realtime processing ability to handle them simultaneously.

9.5 Default Addressing

The NSP address is determined by the state of the Address 0 pin at boot. The user must

configure the wire harness so that the pin is either:

• Tied to V+A

• Tied to GND

• Tied to GND through 100 k

• Unconnected

The 100 k resistor will be subjected to a maximum of +2.6 V, with an additional 11 k

in series, so it can be a low-power part. It is anticipated that a small through-hole resistor

can be spliced right into the wire harness. This configuration is only needed if four

wheels are flown. For three wheels, the other three options are recommended.

For RS485+CAN Configurations
Table 25: RW3-0.06 RS485+CAN Address Information

Address 0 Pin NSP Address on

RS485_0

NSP Address on CAN_A

Tied to V+A 0x03 0x03

Tied to GND 0x04 0x04

Tied to GND through 100 k 0x05 0x05

Unconnected 0x06 0x06

In this configuration, telemetry is always sent to the command port. A NSP packet

arriving on the RS485 port will be replied to on the RS485 port, while a packet arriving

on the CAN port will be replied to on the CAN port.

For Dual RS485 Configurations
Table 26: RW3-0.06 Dual RS485 Address Information

Address 0 Pin NSP Address Command Port Telemetry Port

Tied to V+A 0x03 RS485_1 RS485_1

Tied to V+A 0x13 RS485_0 RS485_1

Tied to V+A 0x23 RS485_1 RS485_0

Tied to V+A 0x33 RS485_0 RS485_0

Tied to GND 0x04 RS485_1 RS485_1

Tied to GND 0x14 RS485_0 RS485_1

Tied to GND 0x24 RS485_1 RS485_0

Tied to GND 0x34 RS485_0 RS485_0

Tied to GND through 100 k 0x05 RS485_1 RS485_1

Tied to GND through 100 k 0x15 RS485_0 RS485_1

Tied to GND through 100 k 0x25 RS485_1 RS485_0

Tied to GND through 100 k 0x35 RS485_0 RS485_0

Unconnected 0x06 RS485_1 RS485_1

Unconnected 0x16 RS485_0 RS485_1

Unconnected 0x26 RS485_1 RS485_0

Unconnected 0x36 RS485_0 RS485_0

For each Address 0 configuration, there are four NSP addresses that the wheel will

recognize. Each corresponds to a different RS485 command and telemetry port. When the

command and telemetry ports are different, the configuration is referred to as 4-wire

RS485. When the command and telemetry ports are the same, the configuration is referred

to as 2-wire RS485.

9.6 Message Control Field
Table 27: Message Control Field

Bit 7 (MSB) “Poll/Final” Bit

Bit 6 “B” Bit

Bit 5 “ACK” Bit

Bits 4 – 0 Command code

The message control field packs four values into a single byte. The command code is an

enumerated value between 0x00 and 0x1F that determines how the data field should be

interpreted.

The “ACK” bit is ignored on commands coming into the wheel. On telemetry reply

messages sent by the wheel it is set to indicate successful execution of the command, or

cleared to indicate that the command cannot be executed.

The “B” bit is copied unchanged from a command message into its reply message. The

wheel does not use it internally.

The “Poll/Final” bit is interpreted differently for command and telemetry messages. For a

command, the bit is “Poll”. If it is set to ‘1’ then the wheel will generate a telemetry

message in reply. If it is cleared to ‘0’ then the command will be executed, but no response

telemetry message will be sent.

For a telemetry message, the bit is “Final”. If a reply consists of a single telemetry message,

then the bit is set to ‘1’. If a reply is too large to fit into a single message then the final

message has the bit set to ‘1’ and the others have the bit cleared to ‘0’.

9.7 Data Field

The interpretation of the data field is dependent on the command code in the message

control field. Some command codes may have no data, some may require a certain fixed

number of data bytes, and some can accept a variable data length.

9.8 Message CRC

Each NSP message contains a 2 byte (16-bit) CRC to guard against errors in transmission.

The 16-bit CCITT polynomial is used: x^16 + x^12 + x^5 + 1. The initial shift register

value is 0xFFFF. Bytes are fed into the CRC computation starting with the destination

address, and concluding with the last byte of the data field. Within a byte, bits are fed in

LSB first.

The following fragment of C code, courtesy of Henry Spencer, illustrates how the CRC

can be computed.

#define POLY 0x8408 /* bits reversed for LSB-first */

unsigned short crc = 0xffff;

while (len-- > 0) {

unsigned char ch = *bufp++;

for (i = 0; i < 8; i++) {

crc = (crc >> 1) ˆ (((ch ˆ crc) & 0x01) ? POLY : 0

);

ch >>= 1;

}

}

9.9 Error Conditions

The wheel will ignore NSP command messages where the destination address does not

correspond to its own NSP address. NSP messages with invalid CRC, invalid

encapsulation, too short or too long are also ignored. In none of these cases will any reply

message be generated.

If an NSP command message is in error due to an unknown command code, or if the data

field is not consistent with the requirements of the command code, and if the “Poll” bit is

set, then a NACK reply message will be generated. This message will be the same length

as the command message, and contain the same data field. The command code will be the

same, as will the “B” bit. The “ACK” bit will be cleared to ‘0’.

10 Protocol Layer 5 (Session Layer)

10.1 Operating Modes

Figure 9: Mode Transition Diagram

Power-on starts the unit in bootloader mode.

10.1.1 Bootloader to Application Transition

The wheel will transition from bootloader to application mode upon receipt of an “INIT

0x00002000” command.

10.1.2 Application to Bootloader Transition

The wheel will transition from application mode to bootloader mode under the following

conditions:

• An “INIT” command with no data is received.

• The bus voltage (VBUS) exceeds ~50 V.

• Any of the winding temperatures (TEMP0, TEMP1) exceeds 125 C.

10.2 Power Switch Sequence

10.2.1 Power Switch Sequence, Rev 8 and Earlier

For power switch configuration in Rev 8 or earlier versions of the wheel, please consult

the factory for the appropriate revision of the ICD.

10.2.2 Power Switch Sequence, Rev 9 and Later

The wheel has no power switch. Commands to turn the switch on and off are ignored.

Telemetry will always show the A switch turned on, for compatibility with earlier

interfaces.

The BUS_MIN_THRESHOLD and BUS_MAX_THRESHOLD parameters are ignored.

10.3 Test Scripts

The reaction wheel contains a number of preprogrammed test scripts. These are used in

the factory for initial characterization and pass/fail acceptance testing. They can also be

used by customers to verify the health of the wheel during integration and on-orbit.

The exact contents of the test scripts is not documented here, to avoid the danger that it

might become out of sync with the actual software. The rw-bit-term program should be

used to record and interpret test script output. It is automatically synced to the wheel

onboard software.

Bootloader Application

10.4 Byte Order

All multi-byte values transported in the data field of NSP messages are in little-endian

format. That is, the least-significant byte is stored first, and the most-significant byte is

stored last.

10.5 Command Codes
Table 28: Command Codes

Command Code Command Bootloader Application

0x00 PING Yes Yes

0x01 INIT Yes Yes

0x02 PEEK Yes Yes

0x03 POKE Yes Yes

0x04 DIAGNOSTIC Yes Yes

0x06 CRC Yes Yes

0x07 READ FILE No Yes

0x08 WRITE FILE No Yes

0x09 READ EDAC No Yes

0x0A WRITE EDAC No Yes

0x0B GATHER EDAC No Yes

The table above shows the command codes that can be used by the host spacecraft to

communicate with the wheel.

10.6 PING (0x00)

The PING command is typically used during testing to verify communications. Incoming

data is ignored. The reply packet contains a human-readable text string containing:

• The type of device and the manufacturer

• The name, and compile time and date of the software that is currently running on

the target processor.

10.6.1 Command Format

Bytes 0 – N Zero or more bytes, ignored by the NSP module

10.6.2 Reply Format

Bytes 0 – N Human-readable ASCII string. No NULL termination.

10.7 INIT (0x01)

The INIT command is used to change the operating mode of a wheel. In general, and INIT

with data is interpreted as an address to jump to. An init with no data is interpreted as a

reset or exit command. In all cases, if a reply has been requested (“Poll” bit set to ‘1’) then

the reply will be sent before the processor state is changed.

The wheel will respond to an INIT with no data by completely resetting the device,

returning to bootloader mode. If it is in bootloader mode, it will respond to an INIT with

4 bytes of data by running an Application Module at the corresponding 32-bit start address.

By convention, devices will ship from the factory with the processor primary application

program stored at address 0x00002000. Thus, a command of INIT 0x00002000 will start

the default behaviour.

10.7.1 Command Format

Reboot command:

No payload bytes

Application start command:

Bytes 0 – 3 32-bit integer address of program to start

10.7.2 Reply Format

Reboot reply:

No payload bytes

Application start reply:

Bytes 0 – 3 32-bit integer address of program to be started

10.8 PEEK (0x02)

The PEEK command is used to read the device memory. Short and long formats of this

command are available for historical reasons. Short commands can be distinguished from

long commands by their lengths.

The wheel processor has no restriction on the alignment or length of a peek.

10.8.1 Short Command Format

Bytes 0 – 3 32-bit address to start peeking data

Byte 4 Number of bytes to read. A value of 0 indicates that 256 bytes

should be read.

10.8.2 Long Command Format

Bytes 0 – 3 32-bit address to start peeking data

Byte 4 - 5 Number of bytes to read.

10.8.3 Reply Format

Bytes 0 – 3 32-bit address of the start of data

Bytes 4 – N One or more bytes read from the target memory

10.9 POKE (0x03)

The POKE command is used to write the device memory. The wheel will only permit a

POKE into flash memory when in bootloader mode. Each 512 byte block of flash memory

has a lifetime of only 20,000 write cycles. One cycle is consumed for each POKE

command that accesses a particular block. This lifetime is more than sufficient for

occasional software patches, but the user is cautioned that a looping sequence of POKE

commands could easily wear out a block.

The wheel processor has no restriction on the alignment or length of a poke.

10.9.1 Command Format

Bytes 0 – 3 32-bit address to start poking data

Byte 4 – N 1 - 512 bytes to write to the target memory

10.9.2 Reply Format

Bytes 0 – 3 32-bit address where data write began

Bytes 4 – N 1 – 512 bytes written to the target memory

10.10 DIAGNOSTIC (0x04)

The DIAGNOSTIC command gathers error count data from the wheel.

10.10.1 Command Format

Byte 0 Address of the diagnostic channel to read, as an 8-bit integer

10.10.2 Reply Format

Byte 0 Address of the diagnostic channel read, as an 8-bit integer

Bytes 1 - 4 Diagnostic value from the addressed channel, as a 32-bit integer

10.11 CRC (0x06)

CRC command is used to calculate a checksum on an area of memory. Any of the memory

spaces may be addressed, and the calculation window may be as large as desired provided

that it does not contain any unimplemented memory.

The CRC uses the same 16-bit polynomial, with the same bit order, as is used for NSP

messages.

The CRC command can potentially be used to request the CRC of the wheel’s entire 128

kB flash memory. This can take a number of seconds, especially in bootloader mode where

the system clock is much slower.

10.11.1.1 Command Format

Bytes 0 – 3 Address of the first byte to CRC as 32-bit integer

Bytes 4 – 7 Address of the last byte to CRC as 32-bit integer

10.11.1.2 Reply Format

Bytes 0 – 3 Address of the first byte in CRC as 32-bit integer

Bytes 4 – 7 Address of the last byte in CRC as 32-bit integer

Bytes 8 – 9 CRC result as 16-bit integer

10.12 READ FILE (0x07)

The Read File command returns one or more “files”, which are four consecutive bytes of

EDAC protected memory. A read from address 0 is a special case, and an additional mode

byte is returned.

Note that because of the single byte of addressing, not all of the EDAC memory can be

accessed by this command.

When multiple telemetry files are read by a single command, they are guaranteed to be

internally consistent (i.e. from the same control frame). Files can be read in any order, and

a single file can be read multiple times.

10.12.1 Command Format

Bytes 0-N List of EDAC addresses divided by 4 (0 – 255). 0 for mode, 1 –

255 for normal.

10.12.2 Reply Format

Bytes 0-N List of File Reply structures. The first byte of each structure

determines its type.

10.12.2.1 Mode Reply Structure

Byte 0 0

Byte 1 Command type read from EDAC

Bytes 2 - 5 Command value read from EDAC

10.12.2.2 Normal Reply Structure

Byte 0 Non-zero EDAC address divided by 4 (1 – 255)

Bytes 1 - 4 EDAC data bytes read from memory

10.13 WRITE FILE (0x08)

The Write File command stores one or more “files”, which are four consecutive bytes of

EDAC protected memory. A write to address 0 is a special case, and an additional mode

byte is stored.

Note that because of the single byte of addressing, not all of the EDAC memory can be

accessed by this command.

When multiple parameter files are written by a single command, they are guaranteed to be

internally consistent (i.e. from the same control frame). Files can be written in any order,

and a single file can be written multiple times.

If a Write File command fails due to improper formatting then no modification to EDAC

memory is made.

10.13.1 Command Format

Bytes 0-N List of File Store structures. The first byte of each structure

determines its type.

10.13.1.1 Mode Store Structure

Byte 0 0

Byte 1 Command type to store

Bytes 2 - 5 Command value to store

10.13.1.2 Normal Store Structure

Byte 0 Non-zero EDAC address divided by 4 (1 – 255)

Bytes 1 - 4 Data bytes to write to EDAC memory

10.13.1 Reply Format

Bytes 0-N List of File Reply structures. The first byte of each structure

determines its type.

10.13.1.1 Mode Reply Structure

Byte 0 0

Byte 1 Command type read from EDAC

Bytes 2 - 5 Command value read from EDAC

10.13.1.2 Normal Reply Structure

Byte 0 Non-zero EDAC address divided by 4 (1 – 255)

Bytes 1 - 4 EDAC data bytes read from memory

10.14 READ EDAC (0x09)

The Read EDAC command returns bytes from EDAC memory. The read process is atomic.

Long and short command formats are available.

10.14.1 Short Command Format

Bytes 0 – 1 EDAC address to start reading

Byte 2 Number of bytes to read. A value of 0 indicates that 256 bytes

should be read.

10.14.2 Long Command Format

Bytes 0 – 1 EDAC address to start reading

Bytes 2 - 3 Number of bytes to read.

10.14.3 Reply Format

Bytes 0 – 1 EDAC address where reading started

Bytes 2 – N The data bytes read from EDAC memory

10.15 WRITE EDAC (0x0A)

The Write EDAC command writes bytes into EDAC memory. The write process is atomic.

10.15.1 Command Format

Bytes 0 – 1 EDAC address to start writing

Bytes 2 – N Data bytes to write to EDAC memory

10.15.2 Reply Format

Bytes 0 – 1 EDAC address where writing started

Bytes 2 – N The data bytes written to EDAC memory

10.16 GATHER EDAC (0X0B)

The Gather EDAC command allows multiple separate ranges of EDAC memory to be

read in an atomic manner.

10.16.1 Command Format

Bytes 0 – N List of gather command structures

10.16.1.1 Gather Command Structure

Bytes 0 – 1 EDAC address to start reading

Bytes 2 – 3 Number of bytes to read

10.16.1 Result Format

Bytes 0 – N List of gather result structures

10.16.1.1 Gather Result Structure

Bytes 0 – 1 EDAC address where reading started

Bytes 2 – 3 Number of bytes read

Bytes 4 – N Data bytes

11 Protocol Layer 6 (Presentation Layer)

11.1 Memory Map
Table 29: Processor Memory Map

Address Range Function

0x00000000 – 0x00001FFF Bootloader program memory

0x00002000 – 0x0000F9FF Program memory (flash)

0x0000FA00 – 0x0000FFFF Stored parameters (flash)

0x00010000 – 0x0001F9FF Extended program memory (flash)

0x0001FA00 – 0x0001FBFF Bootloader program memory

0x01000000 – 0x010000FF 256 B IRAM (RAM)

0x02000000 – 0x02001FFF 8 kB XRAM (RAM)

0x03000080 – 0x030000FF 128 B SFR (RAM) Bank 00h

0x030C0080 – 0x030C00FF 128 B SFR (RAM) Bank 0Ch

0x030F0080 – 0x030F00FF 128 B SFR (RAM) Bank 0Fh

0x03100080 – 0x031000FF 128 B SFR (RAM) Bank 10h

The processor memory can be directly accessed with PEEK and POKE commands, and

CRCs calculated with CRC commands. It is represented as a single 32-bit memory space,

sparsely populated.

The first 8 kB of program memory contain the bootloader. These are protected against

POKEs so that the bootloader cannot be accidentally changed. The next 56 kB contains

the application program. A sequence of POKE commands in bootloader mode can be used

to load new application programs.

The bootloader memory cannot be read by the application program, and so PEEK or CRC

commands to those regions will fail if not in bootloader mode.

The processor has two RAM areas. There is little need for a user to touch these.

There are four banks of Special Function Registers (SFRs). These should not be POKEd

without knowing exactly what is going on. Even PEEKing some of these registers can

have unexpected side effects.

11.2 Diagnostics

The diagnostics contain a series of read-only integers that relate to the health of the

wheel.
Table 30: Diagnostic Channels

Diagnostic Channel Bootloader Application

0x00 Reset Reason

0x01 Reset Count

0x02 RS485_0 Framing Errors NSP Framing Errors

0x03 RS485_0 Runt Packets NSP Runt Packets

0x04 RS485_0 Oversize Packets NSP Oversize Packets

0x05 RS485_0 Bad CRC NSP Bad CRC

0x06 RS485_0 Buffer Overflow NSP Buffer Overflow

0x07 RS485_1 Framing Errors Not Available

0x08 RS485_1 Runt Packets

0x09 RS485_1 Oversize Packets

0x0A RS485_1 Bad CRC

0x0B RS485_1 Buffer Overflow

0x0C CAN_0 Framing Errors

0x0D CAN_0 Runt Packets

0x0E CAN_0 Oversize Packets

0x0F CAN_0 Bad CRC

0x10 CAN_0 Buffer Overflow

The bootloader contains error counters for two RS485 ports and one CAN port. The

application program contains only one set of error counters, which apply to whichever port

has been configured for command reception.

11.2.1 Reset Reason

The reset reason is an enumerated type, describing the reason for the most recent reset of

the wheel processor.
Table 31: Reset Reason Codes

Reset Reason Code Meaning

0 Power cycle. The wheel has either been freshly turned on, or

the input voltage has drooped below approximately 3.5 V.

1 Flash error. An illegal attempt has been made to read or write

flash memory.

2 Comparator reset. The on-chip comparators are not enabled, so

this should never occur.

3 Watchdog reset. The default application program does not use

the watchdog timer, but if it somehow does get turned on this is

the reset that it would generate.

4 Missing clock. The clock source for the processor stopped

ticking. This could be caused by failure of the MEMS oscillator

(if fitted) or by a momentary failure of the internal silicon

oscillator. The bootloader runs from the internal oscillator, so a

permanent failure of that oscillator would disable the wheel.

5 Pin reset. The external /Reset signal has been pulled low. This

is most likely caused by a stator winding over-temperature

event.

6 Software reset. The most likely cause is that an INIT command

has been received with no data, forcing a reset. This could also

be caused if the software encounters an irrecoverable fault, such

as a spurious interrupt.

11.2.2 Reset Count

The reset count contains the number of wheel processor resets since the last power cycle

reset. Immediately after a power cycle the reset count will read as 0. After the first non-

power-cycle reset it will read 1.

11.2.3 Framing Error

A framing error is declared if an NSP message is incorrectly encapsulated on the

communications link. For RS485 links, this would be any time a FESC character is seen

that is not immediately followed by TFESC or TFEND.

CAN framing errors are declared when an incoming standard continuation message is in

error. This may be because there has been no preceding standard start, or the standard

transfer has aborted. It may also be because the sequence number of the continuation

message is unexpected.

11.2.4 Runt Packet

A runt packet is a NSP message that is less than 5 bytes long. Such a fragment cannot be

a properly formed NSP message since it cannot contain a source and destination address,

control field, and CRC.

Runts are counted only if the first byte is equal to the wheel’s address on that port, which

would normally indicate that the packet is addressed to this unit. A zero-length NSP

message is not considered a runt. For example, on an RS485 link two FEND characters

back-to-back is a valid bus condition and not a runt.

Using CAN, a runt packet is an expedited telecommand message with fewer than two data

bytes, or an NSP message carried over standard telecommands that has fewer than five

bytes.

11.2.5 Oversize Packet

An oversize packet is one that has too many bytes in the data field. Packets that are too

long cannot fit into the allocated message buffers and so they must be rejected. See section

9.2 for the length constraints.

11.2.6 Bad CRC

This count is incremented every time a properly formatted (in length and framing) NSP

message is received where the CRC field does not match with the computed CRC, and

where the first byte is equal to the NSP address of the wheel.

Errors in the CRC internal to a CAN message are not counted.

11.2.7 FIFO Overflow

This count is incremented every time one or more incoming bytes are lost due to processor

loading. Only UART0 is able to detect overflows, and due to the constraints of the

hardware it is not guaranteed that all overflow events will be noticed.

11.3 EDAC Memory

The processor supports 1536 bytes of EDAC protected memory. These are implemented

using software-based triple-redundant storage into conventional SRAM cells. EDAC

memory can be read with READ EDAC and READ FILE commands, and written with

WRITE EDAC and WRITE FILE commands. The MODE_STORE command will save

EDAC memory into non-volatile flash memory.

Files addresses marked with * indicate functionality not presently available on the RW3-

0.06 hardware. These channels will read IEEE-754 NaN.

Table 32: EDAC Memory Contents

EDAC Address File

Address

Function Format

0x000 – 0x003 0x00 Command Value Command

Dependent

0x004 – 0x007 0x01 VA Volts (IEEE-754

float)

0x010 – 0x013 0x04 PHASE_COMMON Volts (IEEE-754

float)

0x018 – 0x01B 0x06 8V Volts (IEEE-754

float)

0x01C – 0x01F 0x07 VDD Volts (IEEE-754

float)

0x020 – 0x023 0x08 VCC Volts (IEEE-754

float)

0x028 – 0x02B 0x0A CURRENT_PHASE0 Amps (IEEE-754

float)

0x02C – 0x02F 0x0B CURRENT_PHASE1 Amps (IEEE-754

float)

0x030 – 0x033 0x0C CURRENT_PHASE2 Amps (IEEE-754

float)

0x040 – 0x043 0x10 TEMP0 C (IEEE-754 float)

0x048 – 0x04B 0x12 TEMP2 C (IEEE-754 float)

0x04C – 0x04F 0x13 TEMP3 C (IEEE-754 float)

0x050 – 0x053 0x14 TEMP4 C (IEEE-754 float)

0x054 – 0x057 0x15 SPEED Rad/sec (IEEE-754

float)

0x058 – 0x05B 0x16 MOMENTUM N-m/sec (IEEE-754

float)

0x05C – 0x05F 0x17 SCRUB_INDEX 32-bit unsigned int

0x060 – 0x063 0x18 SEU_COUNT counts (IEEE-754

float)

0x064 – 0x067 0x19 BUS_STATUS Enum in IEEE-754

float

0x068 – 0x06B 0x1A PWM Duty cycle (IEEE-

754 float)

0x06C – 0x06F 0x1B HALL_DIGITAL Enum in IEEE-754

float

0x070 – 0x073 0x1C CONTROL_TIME Timer ticks (IEEE-

754 float)

0x074 – 0x077 0x1D OSCILLATOR_CALIBRATE Ratio IEEE-754

float

0x078 – 0x07B 0x1E TARGET_CURRENT Amps (IEEE-754

float)

0x07C – 0x07F 0x1F MEASURED_CURRENT Amps (IEEE-754

float)

0x080 – 0x083 0x20 SPEED_P_GAIN Amps / rad / sec

(IEEE-754 float)

0x084 – 0x087 0x21 SPEED_I_GAIN Amps / rad (IEEE-

754 float)

0x088 – 0x08B 0x22 SPEED_D_GAIN Amps / rad / sec2

(IEEE-754 float)

0x08C – 0x08F 0x23 ADC_I_GAIN (IEEE-754 float)

0x090 – 0x093 0x24 ADC_P_GAIN (IEEE-754 float)

0x094 – 0x097 0x25 MAX_GAIN_SPEED Rad/sec (IEEE-754

float)

0x098 – 0x09B 0x26 MIN_GAIN_SPEED Rad/sec (IEEE-754

float)

0x09C – 0x09F 0x27 TEST_TONE (IEEE-754 float)

0x0A0 – 0x0A3 0x28 INERTIA kg-m2 (IEEE-754

float)

0x0A4 – 0x0A7 0x29 MOTOR_KT N-m/A (IEEE-754

float)

0x0A8 – 0x0AB 0x2A GAIN_SCHEDULE1 (IEEE-754 float)

0x0AC – 0x0AF 0x2B GAIN_SCHEDULE2 (IEEE-754 float)

0x0B0 – 0x0B3 0x2C GAIN_SCHEDULE3 (IEEE-754 float)

0x0B4 – 0x0B7 0x2D GAIN_SCHEDULE4 (IEEE-754 float)

0x0B8 – 0x0BB 0x2E PROPORTIONAL_OVERRIDE (IEEE-754 float)

0x0BC – 0x0BF 0x2F CONTROL_TYPE (IEEE-754 float)

0x0C0 – 0x0C3 0x30 BUS_MIN_THRESHOLD Volts (IEEE-754)

0x0C4 – 0x0C7 0x31 BUS_MAX_THRESHOLD Volts (IEEE-754)

0x0C8 – 0x0CB 0x32 MAX_SPEED_AGE sec (IEEE-754)

0x0CC – 0x0CF 0x33 LIMIT_SPEED1 Rad/sec (IEEE-754)

0x0D0 – 0x0D3 0x34 LIMIT_SPEED2 Rad/sec (IEEE-754)

0x0D4 – 0x0D7 0x35 LIMIT_CURRENT Amps (IEEE-754)

0x0D8 – 0x0DB 0x36 TURNON_RATE PWM counts per

frame (IEEE-754)

0x0DC – 0x0DF 0x37 OSCILLATOR_TOLERANCE IEEE-754

0x0E0 – 0x0E3 0x38 CURRENT_BYPASS Boolean (IEEE-754

float)

0x0E4 – 0x0E7 0x39 BYPASS_GAIN (IEEE-754 float)

0x0E8 – 0x0EB 0x3A BYPASS_STEP (IEEE-754 float)

0x0EC – 0x0EF 0x3B SINUSOID_PHASE Rad (IEEE-754)

0x0F0 – 0x0F3 0x3C SINUSOID_FREQ Hz (IEEE-754)

0x0F4 – 0x0F7 0x3D SINUSOID_OFFSET Rad/sec (IEEE-754)

0x0F8 – 0x0FB 0x3E CURRENT_IIR_CONSTANT (IEEE-754)

0x0FC – 0x0FF 0x3F VOLTAGE_IIR_CONSTANT (IEEE-754)

0x100 – 0x103 0x40 PREVIOUS_SPEED Rad/sec (IEEE-754)

0x104 – 0x107 0x41 SPEED_INTEGRATOR Amps (IEEE-754)

0x108 – 0x10B 0x42 SPEED_LAST_ERROR Rad/sec (IEEE-754)

0x10C – 0x10F 0x43 ACCEL_TARGET Rad/sec (IEEE-754)

0x128 – 0x12B 0x4A HALL_TRANSITION Counts (IEEE-754)

0x12C – 0x12F 0x4B TORQUE_T0 Nm (IEEE-754)

0x130 – 0x133 0x4C TORQUE_T1 Nm (IEEE-754)

0x134 – 0x137 0x4D TORQUE_T2 Nm (IEEE-754)

0x138 – 0x13B 0x4E TORQUE_T3 Nm (IEEE-754)

0x13C – 0x13F 0x4F TORQUE_T4 Nm (IEEE-754)

0x140– 0x143 0x50 SFFT_STEP_NUMBER 32-bit integer

0x144 – 0x147 0x51 SFFT_STEP_TIMER Sec (IEEE-754)

0x148 – 0x14B 0x52 SFFT_TELEM_COUNT 32-bit integer

0x14C – 0x5BF 0x53 –

0x16F

Self Test Results

0x5C0 – 0x5C1 CRC

0x5C2 LOAD_SOURCE

0x5C3 MODE 8-bit enum

0x5C4 – 0x5C8 Startup I/O 40-bit binary

0x5C9 – 0x5CD Floating I/O 40-bit binary

0x5CE HALL_IMPOSSIBLE 8-bit unsigned int

0x5CF HALL_SKIP 8-bit unsigned int

0x5D0 CONTROL_OVERFLOW 8-bit unsigned int

0x5D1 SPEED_TABLE_SIZE 8-bit unsigned int

0x5D2 USED_TABLE_SIZE 8-bit unsigned int

0x5D3 SMBUS_ABORT 8-bit unsigned int

0x5D4 SMBUS_TIMEOUT 8-bit unsigned int

0x5D5 SMBUS_STOP 8-bit unsigned int

0x5D6 IDLE_INHIBIT 8-bit boolean

0x5D7 REALTIME_DELAY 8-bit unsigned int

0x5D8 – 0x5DA Reserved

0x5DB TEMPSENSE_INHIBIT 8-bit boolean

0x5DC BUSOFF_REASON 8-bit enum

0x5DD ANALOG_HALL_DISABLE 8-bit boolean

0x5DE ADC_REGISTER_REFRESH 8-bit enum

0x5F0 – 0x5F3 CURRENT_THRESHOLD Amps (IEEE-754)

0x5F4 – 0x5F7 CURRENT_FILTER Amps (IEEE-754)

0x5F8 – 0x5FB VOLTAGE_THRESHOLD Volts2 (IEEE-754)

0x5FC – 0x5FF VOLTAGE_FILTER Volts2 (IEEE-754)

11.3.1 Command Value

Accessing file 0 causes an extra mode byte to be transferred. By writing to this file the

mode of the wheel can be commanded. By reading this file the current mode can be

determined. The modes are enumerated in section 11.3.57.

If this parameter is accessed through EDAC writes and reads instead of file reads and writes

there is no explicit mode byte transferred. It is possible to read and write the number

associated with the command, but this is not advised.

11.3.2 VA

This read-only parameters returns the voltage at the V+A signal. The maximum value that

can be read is +69 V. The minimum value that can be read is 0 V. This is not a problem,

since if V+A is negative the wheel will be turned off and not generating telemetry.

11.3.3 PHASE_COMMON

The motor is wound in a Y-configuration. This read-only parameter returns the voltage

from the center of the motor windings. The maximum value that can be read is +64 V. On

the RW-1.0 hardware, the minimum value that can be read is approximately -16 V.

Accurate calibration of negative input voltages is not guaranteed, but a general indication

of their polarity and magnitude is generated. The RW3-0.06 cannot read negative input

voltages.

When the motor is being driven this will typically show half of the applied motor voltage.

When the motor is idle the common point will float at a little over +4 V (RW-1.0) or +6V

(RW3-0.06), due to leakage currents from current sensor and MOSFET driver circuits.

11.3.4 8V

This read-only parameter returns the voltage at the +8 V power supply rail. The “+8 V”

rail can be measured from 0 V to +22.5 V. On Revision 6 hardware its nominal value is

actually +9 V. Revision 7 hardware is nominally +8 V.

These rails should maintain their nominal voltages under all conditions.

11.3.5 VDD, VCC

These read-only parameters return the voltages at the low-voltage rails. VDD returns the

processor’s internal rail which is +2.2 V nominal.

VCC returns the processor’s I/O rail. For the RW3-0.06 revision 6, this is +3.3 V nominal.

For the RW3-0.06 revision 7, this is +2.6 V nominal.

Due to realtime resource conflicts, the processor cannot sample these telemetry points

while running in a closed-loop motor current mode. IEEE-754 NaN is returned to indicate

that data is unavailable.

11.3.6 CURRENT_PHASE[0|1|2]

These read-only parameters return the current in each of the three motor winding phases.

Positive values indicate that current is flowing into the phase from the motor driver.

Negative values indicate that current is flowing out of the phase into the motor driver. The

current range that can be measured is -3.75 to +3.75 A.

Current measurements are unreliable when PWM is being applied to the phase, or when

the phase is undriven and PWM is applied to another phase. The measurement is only

valid when either the phase is driven to ground, or all of the phases are undriven. Thus, in

normal non-regenerative operation, all of the valid currents will be negative.

Due to realtime resource conflicts, the processor cannot sample these telemetry points

while running in a closed-loop motor current mode. IEEE-754 NaN is returned to indicate

that data is unavailable.

11.3.7 TEMP[0]

These read-only parameters return the temperature of the motor windings. The thermistor

bead is bonded to the stator in contact with the windings.

The sensors are NTC devices, so an open-circuit failure causes an apparent low temperature

reading. If the measured temperature of the sensor exceeds +125 C the processor will

reset. This behaviour is implemented in hardware and cannot be bypassed by software.

11.3.8 TEMP[2|3]

These read-only parameters return temperatures on the circuit board. There are two

calibrated silicon temperature sensors. TEMP2 is located immediately next to the

processor. TEMP3 is located adjacent to the motor drive transistors.

The maximum temperature that can be returned is +125 C. The minimum temperature

that can be reliably returned is -55 C – lower temperatures may be returned but at lower

accuracy.

11.3.9 TEMP4

This read-only parameter returns the temperature of the processor die. The return is

nominally in C, but the accuracy is poor! There is significant unit-to-unit variation, and

no effort has been made to calibrate. This telemetry point should only be used for a general

hot/cold indication. TEMP2 is a far better measure of the electronics temperature.

Due to realtime resource conflicts, the processor cannot sample this telemetry points while

running in a closed-loop motor current mode. IEEE-754 NaN is returned to indicate that

data is unavailable.

11.3.10 SPEED

This read-only parameter returns the speed of the rotor.

11.3.11 MOMENTUM

This read-only parameter returns the angular momentum of the rotor. It is derived from

the SPEED multiplied by INERTIA.

11.3.12 SCRUB_INDEX

Each time through the control frame (approximately 93 Hz) one byte of EDAC memory is

scrubbed for errors. This file contains a pointer to the last EDAC location scrubbed. It can

be read to verify that scrubbing is occurring. It can also be written to force priority

scrubbing of a particular area.

Note that this file is stored as an integer.

11.3.13 SEU_COUNT

This parameter records the number of errors that have been found during EDAC scrubbing.

Any error in a byte is considered to be a single error – no attempt is made to determine

how many bits were flipped.

This parameter can be read to determine the error count. It can also be written – typically

to reset it to zero.

11.3.14 BUS_STATUS

This read-only parameter returns the state of the bus power switches. Wheels of revision 9

and later will always return a value of 5.0 indicating switch A is on and switch B is off.

11.3.15 PWM

This read-only parameter returns the PWM duty cycle of the motor drive. It has a range of

0.0 to +1.0. No motor drive direction is encoded. [Contrast this to the direction sign used

in the PWM command mode.]

This is only valid when the motor is being driven. During idle mode non-zero PWM values

may be seen which do not correspond to actual motor drive.

11.3.16 HALL_DIGITAL

This read-only parameter returns the state of the three digital Hall-effect sensors. Each

switch can be in one of two states: ‘0’ and ‘1’. The state can be decoded from the following

table:

Table 33: Digital Hall-effect sensor status codes

HALL_DIGITAL Hall 0 Hall 1 Hall 2

0.0 0 0 0

1.0 1 0 0

2.0 0 1 0

3.0 1 1 0

4.0 0 0 1

5.0 1 0 1

6.0 0 1 1

7.0 1 1 1

Note that codes 0.0 and 7.0 should not be mechanically possible.

11.3.17 CONTROL_TIME

This read-only parameter provides an indication of the processor realtime margin. The

free-running control frame timer counts from 0 to 65535 and then overflows to 0. At each

overflow a new control frame is started. The contents of the timer are latched and stored

in the CONTROL_TIME file when the control algorithm has completed.

Smaller values indicate greater realtime margin. Values that approach 65535 provide a

caution that the processor may be overloaded and unable to reliably complete its control

algorithm within the allotted time.

See the CONTROL_OVERFLOW file for indication of negative realtime margin.

11.3.18 OSCILLATOR_CALIBRATE

This read-only parameter compares the processor’s internal 24 MHz (nominal) silicon

oscillator to its external 48 MHz (nominal) MEMS oscillator. The result is a nominal ratio

of 2.0.

This value is measured only once, when the application is started. It is judged for

acceptability, based on the criterion in OSCILLATOR_TOLERANCE. If it is outside the

acceptable bounds the MEMS oscillator is declared failed and is not used. The silicon

oscillator will be used instead as the time base. If the ratio is acceptable then the MEMS

oscillator will be used as the time base and the silicon oscillator shut down to save power.

Some models of reaction wheel may be provided without a MEMS oscillator, to save either

cost or power. For these units the expected value of this telemetry is 0.0, and the silicon

oscillator will always be used.

11.3.19 TARGET_CURRENT

This read-only parameter displays the desired motor winding current, if the wheel is in a

mode which uses the closed-loop current controller (current, speed, torque, etc). Positive

current makes the rotor speed more positive.

If the wheel is in a mode which does not use the closed-loop current controller (idle, pwm,

etc) then this value will return as NaN.

11.3.20 MEASURED_CURRENT

If the wheel is in a mode which uses the closed-loop current controller (current, speed,

torque, etc) this read-only parameter shows an instantaneous reading of the motor winding

current. The motor winding current is measured at 187 kHz, so this telemetry is inherently

undersampled. Positive current makes the rotor speed more positive.

If the wheel is in a mode which does not use the closed-loop current controller (idle, pwm,

etc) then this value will return as NaN. The CURRENT_PHASEx telemetry channels can

instead be used to look at the motor current.

11.3.21 SPEED_[P|I|D]_GAIN

These read-only parameters set the gains for the PID closed-loop speed controller. See

CONTROL_TYPE for the formula to determine the gains.

11.3.22 ADC_[I|P]_GAIN

These read/write parameters set the gains for the PI closed-loop motor current controller.

This controller takes motor current as an input, and servos the drive PWM. It runs as an

inner loop within the speed controller.

11.3.23 MIN_GAIN_SPEED, MAX_GAIN_SPEED

These read/write parameters bound the speed used as an input to the speed controller gain

formula.

By setting these two parameters to the same value the speed dependence of the gains can

be effectively disabled.

11.3.24 TEST_TONE

TBD

11.3.25 INERTIA

This read/write parameter sets the rotor inertia. It is used to scale between acceleration

and torque, and momentum and speed.

11.3.26 MOTOR_KT

This read/write parameter sets the motor torque. This is not used in normal operation, as

the normal controller is entirely closed-loop. This parameter is solely used when switching

out of idle mode while the rotor is spinning. In this situation the wheel must make an initial

guess as to the appropriate PWM duty cycle. Using an open-loop model to inform this

guess minimizes the initial current spike.

11.3.27 GAIN_SCHEDULE[1..4]

These four read/write parameters are used to set the speed control gains, in those cases

when PROPORTIONAL_OVERRIDE is zero. First, the characteristic speed  is

determined based on the actual and setpoint speeds and on MAX_GAIN_SPEED and

MIN_GAIN_SPEED.

()()MAXMINettactualMAXMIN  ,,, arg=

The critical gain and period are modeled as a function of the characteristic speed. The four

GAIN_SCHEDULE parameters are written as G1..G4.

3

1

45.91

2

G

G

GHzPu

GKu





=

=

The gains are then set according to the Ziegler-Nichols method.

KpPuKd

Pu
Kp

Ki

KuKp

=


=

=

125.0

0.2

6.0

11.3.28 PROPORTIONAL_OVERRIDE

This read/write parameter is used to override the gain settings, usually in a factory gain

tuning context. When non-zero, the gains are set accordingly:

0.0

0.0

_

=

=

=

Kd

Ki

OVERRIDEALPROPORTIONKp

11.3.29 CONTROL_TYPE

This read/write parameter is used to determine the control type, using the Ziegler-Nichols

method.

The value stored in CONTROL_TYPE is truncated to an integer. If the value is 1, a PI

controller is used:

0.0

2.1

45.0

=


=

=

Kd

Pu
Kp

Ki

KuKp

If the value is 2, a PID controller is used:

KpPuKd

Pu
Kp

Ki

KuKp

=


=

=

125.0

0.2

6.0

In the case of any other value, a P controller is used:

0.0

0.0

5.0

=

=

=

Kd

Ki

KuKp

11.3.30 BUS_MIN_THRESHOLD, BUS_MAX_THRESHOLD

These read/write parameters determine the permissible range of voltages for a power

switch to be on. They control the switch sequence behaviour detailed in 10.2.

11.3.31 MAX_SPEED_AGE

This read/write parameter determines which digital Hall sensor transitions are used to

determine the SPEED telemetry. Transitions are discarded if they are older than

MAX_SPEED_AGE in time, if a complete rotor revolution has occurred since them, or if

a rotor direction reversal is detected.

MAX_SPEED_AGE is relevant at very low rotor speeds. A larger value will allow more

Hall sensor transitions to be used, giving a less noisy speed estimate. However, it will also

increase the latency in speed measurements which may cause closed-loop speed control

modes to become unstable.

11.3.32 LIMIT_SPEED1

This read/write parameter sets the maximum speed that closed-loop modes will target. The

magnitude of the speed target used in speed, torque, momentum and acceleration modes is

clamped to this value. This is particularly significant in torque and acceleration modes –

if communication with the flight computer is lost for any reason the rotor will slowly

accelerate until this limit is reached.

11.3.33 LIMIT_SPEED2

This read/write parameter sets the absolute maximum speed that the wheel can reach. If

the rotor exceeds this speed the drive will be set to idle. Once the rotor slows below this

limit the drive is restored. Thus, the wheel may limit-cycle around this limit.

LIMIT_SPEED2 is active in all modes, which is significant since LIMIT_SPEED1 is not

effective in open-loop modes (PWM, CURRENT, etc).

11.3.34 LIMIT_CURRENT

This read/write parameter sets the greatest motor drive current used by closed-loop current

modes. It has no effect in PWM mode. The largest current that can be sensed is +/- 3.0 A,

and LIMIT_CURRENT must be smaller than this so that closed-loop control can be

achieved. Reducing this value will limit the torque that the wheel can generate.

11.3.35 TURNON_RATE

This read/write parameter controls the turn-on speed of the power switches. The total turn-

on time is 2.8 sec / TURNON_RATE. Only natural numbers should be used.

The parameter is important because it limits the inrush current into the EMI filter when a

power switch is turned on. Smaller values give less inrush. Inrush is not a concern for the

RW3-0.06 hardware, and a value of 255.0 should be used.

11.3.36 OSCILLATOR_TOLERANCE

The nominal value of OSCILLATOR_CALIBRATE is 2.0.

OSCILLATOR_TOLERANCE is a read/write parameter that controls the accepted range

of OSCILLATOR_CALIBRATE. At the default value of 0.025, a 2.5% variation is

allowed. That is, OSCILLATOR_CALIBRATE is allowed to range between 1.95 and

2.05.

The decision as to whether to use the MEMS oscillator is made immediately after the

application starts. Thus, the value of OSCILLATOR_TOLERANCE must be stored using

the STORE_FILES command in order to influence the decision.

11.3.37 CURRENT_BYPASS, BYPASS_GAIN, BYPASS_STEP

Ideally this file should only be written with the wheel at rest. Changing the value while

spinning will result in a small glitch. The CURRENT_BYPASS parameter is used to set

one of four possible behaviours:

CURRENT_BYPASS < 0.0 The closed-loop motion control modes (SPEED,

TORQUE, etc) generate BLEND commands.

Regeneration is greatly reduced.

CURRENT_BYPASS = 0.0 The closed-loop motion control modes (SPEED,

TORQUE, etc) generate CURRENT commands.

Expect regeneration.

CURRENT_BYPASS > 0.0,

CURRENT_BYPASS ≠ 1.0

[By convention, use 2.0]

The closed-loop motion control modes (SPEED,

TORQUE, etc) generate PWM commands. Expect

regeneration. Motor current is estimated from

MOTOR_KT and BYPASS_GAIN (as a proxy for

motor resistance). Bus voltage is as-measured by the

analog telemetry. BYPASS_STEP is not used.

LIMIT_CURRENT is respected.

This configuration can be used if the current sensor is

inoperative, or if there is a desire to read VDD, VCC

or TEMP4 telemetry.

CURRENT_BYPASS = 1.0 The closed-loop motion control modes (SPEED,

TORQUE, etc) generate PWM commands. Expect

regeneration.

Neither ADC is used, so both motor current and bus

voltage are unavailable. Set BYPASS_GAIN to

approximately motor resistance divided by nominal

bus voltage. LIMIT_CURRENT is not respected, and

large steps in speed target can result in large input

currents.

If set to a non-zero value, BYPASS_STEP sets the

maximum allowed change of duty cycle ratio within a

single control. It is suggested that this not be used

unless absolutely necessary. It can destabilize the

speed controller if used incorrectly.

This configuration is not recommended.

11.3.38 SINUSOID_[PHASE, FREQ, OFFSET]

Please see SINUSOID mode for details.

11.3.39 PREVIOUS_SPEED

This read-only parameter contains the SPEED file from the previous control frame. It is

expected that it might be used in the future to generate torque telemetry, but at present it is

unused.

11.3.40 SPEED_INTEGRATOR

This parameter contains the closed-loop controller integrator, scaled in amps of actuation.

It is technically a read/write parameter, and it is possible for the user to write this for test

purposes.

11.3.41 SPEED_LAST_ERROR

This read-only parameter contains the controller error from the previous control frame. It

is used with the differential gain term of the closed-loop controller.

11.3.42 ACCEL_TARGET

This parameter contains the speed setpoint used by the acceleration controller. The

controller will add the acceleration to this file each frame. It is technically a read/write

parameter, and it is possible for the user to write this as a way to force a new speed while

remaining in acceleration/torque mode.

11.3.43 HALL_TRANSITION

This read-only parameter contains the number of digital Hall-effect sensor transitions seen

over the past frame. The value is signed, so transitions in the positive direction of rotation

give positive counts and transitions in the negative direction of rotation give negative

counts. This is used to help generate the HALL_SPEED measure.

11.3.44 TORQUE_[T0..T4]

These five read-only parameters record the instantaneous torques measured in the last

five control frames. T0 is the result of the most recent control frame. T4 is four frames

old (43 msec). The torque is computed as:

TORQUE = INERTIA * (SPEED – PREVIOUS_SPEED) * 93 Hz

Torque telemetry at low speed should be used with caution. The speed estimate is only

updated when new hall sensor pulses are seen (or a very long period elapses). If there has

been no hall sensor pulse in the previous control frame then SPEED ==

PREVIOUS_SPEED and so TORQUE == 0.

11.3.45 SFFT_STEP_NUMBER

This parameter contains the step number for the current script (SFFT, life, burn-in, etc). If

a script is not running it is set to 0. It is technically a read/write parameter, but using it to

jump forward or backwards within a script is discouraged.

11.3.46 SFFT_STEP_TIMER

This parameter contains the length of time, in seconds, that the current script step has been

operating. It is updated upwards each frame until the step limit is reached at which time

the script moves to the next step. It is technically a read/write parameter, but using it to

adjust script timing is discouraged.

11.3.47 SFFT_TELEM_COUNT

This parameter starts counting at zero at the beginning of a script. Each time a self-test

telemetry point is stored the count increments. It can be used to determine which self-test

results are valid. As soon as the script ends the count is set to zero. It is technically a

read/write parameter, but using it to adjust the storage location of self-test results is

discouraged.

11.3.48 CRC

Not presently used.

11.3.49 LOAD_SOURCE

Not presently used.

11.3.50 MODE

This parameter stores the wheel’s current mode. It is more often accessed through file 0,

where the mode and command value can be read or written simultaneously.

11.3.51 Startup I/O, Floating I/O

At initialization the processor will switch all of its I/O pins to high-impedance digital inputs

with ~100 kΩ pull-up resistance on each. The digital value of each port (P0 .. P4) is stored

in the Startup I/O bitmap. The pull-ups are then disabled, and the digital value of each port

is stored in the Floating I/O bitmap.

These data can help to detect and debug hardware faults on the PCB, including missing

pull-up/down resistors, short-circuits on logic lines, and open-circuit solder joints on the

processor.

11.3.52 HALL_IMPOSSIBLE

This value counts the number of times that a transition to an “impossible” digital Hall-

effect sensor configuration is seen. Impossible configurations are all “0”, or all “1”. This

is an error condition, and would normally indicate failure of a sensor or loss of a rotor

magnet. It is read/write, and can be written as zero to reset the count. The count range is

0..255. If an impossible configuration occurs with the count at 255 it will cycle back to 0.

11.3.53 HALL_SKIP

This value counts the number of times that a Hall-effect sensor pattern transitions to

another pattern that should not be immediately adjacent. Adjacent sensor patterns are those

that differ by only one bit.

11.3.54 CONTROL_OVERFLOW

This value counts the number of control frames where the control algorithm has not

finished processing before the start of the next frame. This is an error condition, and would

be expected to result in poor control. It is read/write, and can be written as zero to reset

the count. The count range is 0..255. If a control overflow occurs with the count at 255 it

will cycle back to 0.

11.3.55 SPEED_TABLE_SIZE

This value shows the number of digital Hall sensor transitions that are held in the transition

table. Transitions are discarded if they are older than MAX_SPEED_AGE in time, if a

complete rotor revolution has occurred since them, or if a rotor direction reversal is

detected.

11.3.56 USED_TABLE_SIZE

This value shows the number of digital Hall sensor transitions that are being used to

compute the SPEED estimate. The speed estimator will attempt to use the following

number of transitions, in order of decreasing preference:

• A number of transitions equal to a full revolution, plus one. This is 3P+1, where

P is the number of magnetic poles in the rotor. This is the most accurate estimate.

• A number of transitions in the form 6N+1, where N is as large a natural number

as possible. This number nulls error from Hall sensor orientation and offset, but

incurs error from uneven magnet spacing.

• Four transitions. This number nulls error from Hall sensor orientation. Hall

sensor magnetic offset and uneven magnet spacing will introduce noise.

• Three transitions. This is suitable for very slow rotor speeds. All noise sources

apply.

• Two transitions. This is suitable for even slower rotor speeds. All noise sources

apply.

• If two transitions are not available, the speed is declared to be 0.0 rad/sec.

11.3.57 SMBUS_ABORT

This value shows the number of times that the SMBus has aborted a transaction due to a

NACK.

11.3.58 SMBUS_TIMEOUT

This value shows the number of times that the SMBus has timed out due to an overly

long SCL clock stretch. At present the software does not support this.

11.3.59 SMBUS_STOP

This value shows the number of times that the processor has found SDA to be held low

when it wanted to start a transaction, and has issued a STOP condition to free the SMBus.

11.3.60 IDLE_INHIBIT

If this value is zero then the processor will go into a power-saving idle mode when not

needed. It wakes immediately when interrupted, and there is no performance penalty. If

this value is non-zero then the processor will stay on continually.

Changing this parameter will show a modest change in power consumption (visible only

through an external meter) and in TEMP4 telemetry.

11.3.61 REALTIME_DELAY

If this value is non-zero the processor will consume that many clock cycles per 256

executing NOP instructions. This feature can be used to intentionally degrade the

realtime margins. Values greater than 32 will be replaced with 32.

11.3.62 TEMPSENSE_INHIBIT

If this value is non-zero then the TEMP2 and TEMP3 telemetry channels will read as

NAN. The digital temperature sensors on the SMBus will not be used.

11.3.63 BUSOFF_REASON

This indicates the reason for the power switch being turned off:

Value Meaning

0 No reason. Set at turn-on

1 Set upon command to SWITCH_A, SWITCH_B or SWITCH_HIGHEST

2 Set upon command to SWITCH_OFF

3 Switch turned off due to BUS_MIN_THRESHOLD or

BUS_MAX_THRESHOLD

4 Switch turned off due to CURRENT_FILTER

5 Switch turned off due to VOLTAGE_FILTER

11.3.64 ANALOG_HALL_DISABLE

If non-zero, then the analog Hall effect sensors are powered down. The following

parameters are set to NaN:

• HALL_ROTATION

• HALL_SPEED

• HALL_ANGLE

• HALL_PREVIOUS_ANGLE

• HALL_TRANSITION

This saves some power, and some processor realtime margin.

11.3.65 ADC_REGISTER_REFRESH

This can be used to refresh the ADC gain registers which may become corrupted by ESD

events.

Value Meaning

0 Do not refresh gain registers

1 Evidence that a one-shot refresh has occurred

2 When the wheel is next in a current-control drive mode,

refresh the gain registers once and reset this byte to ‘1’.

3+ Whenever the wheel is in a current-controlled drive mode,

refresh the gain registers once per control cycle.

11.3.66 CURRENT_FILTER, CURRENT_IIR_CONSTANT,
CURRENT_THRESHOLD

At each control frame, occurring at 91.5 Hz, the IIR filter is updated:

𝐶𝑈𝑅𝑅𝐸𝑁𝑇. 𝐹𝐼𝐿𝑇𝐸𝑅
← 𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷. 𝐶𝑈𝑅𝑅𝐸𝑁𝑇 × 𝐶𝑈𝑅𝑅𝐸𝑁𝑇. 𝐼𝐼𝑅. 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇
+ 𝐶𝑈𝑅𝑅𝐸𝑁𝑇. 𝐹𝐼𝐿𝑇𝐸𝑅 × (1 − 𝐶𝑈𝑅𝑅𝐸𝑁𝑇. 𝐼𝐼𝑅. 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇)

If the absolute value of CURRENT_FILTER exceeds CURRENT_THRESHOLD, and if

CURRENT_THRESHOLD is non-zero, then the bus switch is turned off and

BUSOFF_REASON is set to 4.

CURRENT_FILTER is set to zero whenever MEASURED_CURRENT is NaN.

Note that some of the configuration parameters are above EDAC address 0x3FF, and so

are inaccessible by the READ FILE and WRITE FILE commands.

11.3.67 VOLTAGE_FILTER, VOLTAGE_IIR_CONSTANT,
VOLTAGE_THRESHOLD

At each control frame, occurring at 91.5 Hz, the IIR filter is updated:

𝑉𝑂𝐿𝑇𝐴𝐺𝐸. 𝐹𝐼𝐿𝑇𝐸𝑅
← (𝑉𝐴 − 𝑉𝐵𝑈𝑆)2 × 𝑉𝑂𝐿𝑇𝐴𝐺𝐸. 𝐼𝐼𝑅. 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇
+ 𝑉𝑂𝐿𝑇𝐴𝐺𝐸. 𝐹𝐼𝐿𝑇𝐸𝑅 × (1 − 𝑉𝑂𝐿𝑇𝐴𝐺𝐸. 𝐼𝐼𝑅. 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇)

If the value of VOLTAGE_FILTER exceeds VOLTAGE_THRESHOLD, and if

VOLTAGE_THRESHOLD is non-zero, then the bus switch is turned off and

BUSOFF_REASON is set to 5.

VOLTAGE_FILTER is set to zero whenever VBUS is NaN.

Note that some of the configuration parameters are above EDAC address 0x3FF, and so

are inaccessible by the READ FILE and WRITE FILE commands.

11.4 Command Modes

Command

Number

Command Name Command Value

0x00 IDLE Ignored

0x01 PWM Duty cycle (-1.0 to +1.0)

0x02 CURRENT Amps (-2.5 to +2.5)

0x03 SPEED Rads/sec

0x04 PWM_H1 Duty cycle (-1.0 to +1.0)

0x05 PWM_H2 Duty cycle (-1.0 to +1.0)

0x06 PWM_H3 Duty cycle (-1.0 to +1.0)

0x07 PWM_H4 Duty cycle (-1.0 to +1.0)

0x08 PWM_H5 Duty cycle (-1.0 to +1.0)

0x09 PWM_H6 Duty cycle (-1.0 to +1.0)

0x0A CURRENT_H1 Amps (-2.5 to +2.5)

0x0B CURRENT_H2 Amps (-2.5 to +2.5)

0x0C CURRENT_H3 Amps (-2.5 to +2.5)

0x0D CURRENT_H4 Amps (-2.5 to +2.5)

0x0E CURRENT_H5 Amps (-2.5 to +2.5)

0x0F CURRENT_H6 Amps (-2.5 to +2.5)

0x10 ACCEL Rads/sec²

0x11 MOMENTUM N-m-sec

0x12 TORQUE N-m

0x13 BURNIN Final test step #

0x14 SFFT Final test step #

0x15 LIFE Final test step #

0x16 STORE_FILES 0.0 or 1.0

0x17 DEFAULT_FILES 0.0 or 1.0

0x18 PWM_P0 Duty cycle (-1.0 to +1.0)

0x19 PWM_P1 Duty cycle (-1.0 to +1.0)

0x1A PWM_P2 Duty cycle (-1.0 to +1.0)

0x1B SWITCH_OFF Ignored

0x1C SWITCH_A Ignored

0x1D SWITCH_B Ignored

0x1E SWITCH_HIGHEST Ignored

0x1F SOAK Final test step #

0x20 REPEAT Ignored

0x21 COMPLETE Ignored

0x22 TORQUE_TEST Fraction of nominal torque

0x23 CURRENT_TEST Fraction of nominal current

0x24 AUX1 Final test step #

0x25 AUX2 Final test step #

0x26 BRAKE Amps (-2.5 to +2.5)

0x27 BRAKE_H1 Amps (-2.5 to +2.5)

0x28 BRAKE_H2 Amps (-2.5 to +2.5)

0x29 BRAKE_H3 Amps (-2.5 to +2.5)

0x2A BRAKE_H4 Amps (-2.5 to +2.5)

0x2B BRAKE_H5 Amps (-2.5 to +2.5)

0x2C BRAKE_H6 Amps (-2.5 to +2.5)

0x2D BLEND Amps (-2.5 to +2.5)

0x2E BLEND_H1 Amps (-2.5 to +2.5)

0x2F BLEND_H2 Amps (-2.5 to +2.5)

0x30 BLEND_H3 Amps (-2.5 to +2.5)

0x31 BLEND_H4 Amps (-2.5 to +2.5)

0x32 BLEND_H5 Amps (-2.5 to +2.5)

0x33 BLEND_H6 Amps (-2.5 to +2.5)

0x34 SINUSOID Rads/sec

11.4.1 IDLE

In IDLE mode the motor drive is turned off. If it is spinning, the rotor is free to slow down

under friction.

11.4.2 PWM

In PWM mode the motor is driven with a constant duty cycle. The command may be

between -1.0 and 1.0. This is interpreted as a duty cycle between 0.0 and 1.0, in either the

positive or negative direction.

PWM mode does not use closed-loop current or speed control, so it is not of great use in

spacecraft fine control. However it does allow for extremely high torques (and very high

power consumption!), so it may be used open-loop during slew maneuvers.

11.4.3 CURRENT

In CURRENT mode the motor is driven with closed-loop current control. Positive values

indicate current that will produce positive torque, while negative values indicate current

that will produce negative torque.

Since motor torque is proportional to current, this mode can potentially be used for

spacecraft fine control. There will be significant disturbances from bearing friction/stiction

as the rotor passes through zero speed.

11.4.4 SPEED

In SPEED mode the rotor speed is servoed to the command value. The closed-loop speed

controller outputs a current setpoint, which is in turn used by the closed-loop current

controller.

11.4.5 PWM_H[1..6]

In these modes the digital Hall-effect sensors are overridden, and the binary code is set to

the H1..H6 value. Other than that, the mode is identical to PWM mode. It allows a

particular PWM duty cycle to be driven onto a particular motor phase regardless of the

rotor position. The rotor will typically not spin in these modes, but will oscillate about a

particular electrical angle.

11.4.6 CURRENT_H[1..6]

In these modes the digital Hall-effect sensors are overridden, and the binary code is set to

the H1..H6 value. Other than that, the mode is identical to CURRENT mode. It allows a

particular current to be driven onto a particular motor phase regardless of the rotor position.

The rotor will typically not spin in these modes, but will oscillate about a particular

electrical angle.

11.4.7 ACCEL

When not in ACCEL mode, the ACCEL_TARGET file is set to SPEED. In ACCEL mode,

the acceleration command is added to ACCEL_TARGET each control frame.

ACCEL_TARGET is then used as the setpoint for the speed mode controller.

11.4.8 MOMENTUM

In MOMENTUM mode, the SPEED controller is used with a setpoint equal to the

commanded MOMENTUM divided by the INERTIA file.

11.4.9 TORQUE

In TORQUE mode, the ACCEL controller is used with a setpoint equal to the commanded

TORQUE divided by the INERTIA file.

11.4.10 BURNIN

The BURNIN mode starts a test script intended to bring the bearing lubricant to a steady-

state initial condition. Details are TBD.

11.4.11 SFFT

The SFFT mode starts a test script to fully evaluate the health of an integrated reaction

wheel. The test will run for a number of minutes before terminating. All of the result data

is stored in the parameter file. Consult the factory for automated software that will generate

pass/fail reports.

11.4.12 LIFE

The LIFE mode starts a test script intended for long-term operation on a life-test reaction

wheel. Details are TBD.

11.4.13 STORE_FILES

If the STORE_FILES mode is entered with a value of exactly 1.0, all of the parameters

will be stored to non-volatile flash memory. The mode value will be set to 0.0, to indicate

that the write has occurred and to prevent multiple writes. Whenever the wheel resets it

will start with the stored parameters.

This mode does not drive the motor, and is equivalent in that way to IDLE.

11.4.14 DEFAULT_FILES

If the DEFAULT_FILES mode is entered with a value of exactly 1.0 the stored parameters

in non-volatile flash memory are erased. The mode value will be set to 0.0, to indicate that

the erasure has occurred and to prevent multiple erasures. Whenever the wheel resets it

will start with default parameters. This command has no effect on the parameters currently

in the wheel parameter file, only on the parameters after the next reset.

This mode does not drive the motor, and is equivalent in that way to IDLE.

11.4.15 PWM_P[0..2]

The PWM_P[0..2] modes allow the duty cycle of a particular motor phase (0..2) to be set.

Only the one phase is driven, and none of the phases is connected to ground. This allows

the motor phase voltage to be read on PHASE_COMMON telemetry, while no current

flows in the motor.

11.4.16 SWITCH_OFF

This mode turns off both power switches. The switches turn off immediately, and stay off

until a further SWITCH command. This mode does not drive the motor, and is equivalent

in that way to IDLE.

11.4.17 SWITCH_[A|B]

This mode attempts to turn on one of the power switches. The switch turn-on rate is

governed by TURNON_RATE. This mode does not drive the motor, and is equivalent in

that way to IDLE.

11.4.18 SWITCH_HIGHEST

If neither power switch is on, this mode compares the VA and VB telemetry. The bus with

the highest voltage is turned on. Once this decision is made there are no further

comparisons, so there is no danger of chatter if VA and VB are almost equal. This mode

does not drive the motor, and is equivalent in that way to IDLE.

11.4.19 SOAK

The SOAK mode starts a test script intended to facilitate the 120 hour high-temperature

burn-in test. It is expected that the electronics unit will be connected to a stator, but there

will not be a rotor. The mode drives current through each of the motor phases in turn and

logs analog telemetry.

11.4.20 REPEAT

This mode exists as a flag within a script, indicating that the script should return to the first

step. It is not a mode that can be usefully commanded by a user.

11.4.21 COMPLETE

This mode exists as a flag within a script, indicating that the script should terminate.. It is

not a mode that can be usefully commanded by a user.

11.4.22 TORQUE_TEST

This mode is intended to be used within a script, so that wheels with large and small

nominal torques can share the same script files. It is not a mode that should be commanded

by a user.

11.4.23 CURRENT_TEST

This mode is intended to be used within a script, so that wheels with large and small

nominal torques can share the same script files. It is not a mode that should be commanded

by a user.

11.4.24 AUX1, AUX2

These are special test modes, which make customer-specific measurements.

11.4.25 BRAKE

This mode is usually not what the user wants. See BLEND before using BRAKE.

BRAKE mode controls the motor winding current in a closed-loop manner similar to

CURRENT mode. However it uses 732 Hz PWM instead of 187.5 kHz. Furthermore,

only the low-side MOSFETs are switched. This has the effect of slowing the motor without

regenerating significant power back to the spacecraft.

BRAKE should be used with a current sign consistent with slowing the motor. Thus, when

the rotor speed is positive the BRAKE sign should be negative. When the rotor speed is

negative the BRAKE sign should be positive. A BRAKE command with the wrong sign

will result in a maximum braking effort which is probably not what is intended.

11.4.26 BRAKE_H[1..6]

Similar to CURRENT_H[1..6], these modes are the same as BRAKE except that the

Hall-effect sensors are overridden.

11.4.27 BLEND

This mode controls the motor winding current in a closed-loop manner. If a gentle braking

is required, this emulates BRAKE. If acceleration or rapid deceleration is required, this

emulates CURRENT.

This can be thought of as a CURRENT mode with minimal regeneration.

11.4.28 BLEND_H[1..6]

Similar to CURRENT_H[1..6], these modes are the same as BLEND except that the Hall-

effect sensors are overridden.

11.4.29 SINUSOID

This mode puts the wheel in a closed-loop state, tracking a sinusoidal speed profile. The

amplitude of the sinusoid is given by the mode command, while the frequency and offset

are given by the SINUSOID_FREQ and SINUSOID_OFFSET files.

𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∙ 𝑠𝑖𝑛(𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑃𝐻𝐴𝑆𝐸) + 𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑂𝐹𝐹𝑆𝐸𝑇

𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑃𝐻𝐴𝑆𝐸 ← (𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑃𝐻𝐴𝑆𝐸 + ∆𝑡 ∙ 𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝐹𝑅𝐸𝑄)𝑚𝑜𝑑𝑢𝑙𝑜 2𝜋

This mode can be used to characterize the closed-loop frequency response of the wheel.

Be careful not to use too large an amplitude, as overheating can occur. A 100 rad/sec

amplitude 1 Hz sinusoid is used in the factory to test the overtemperature shutdown.

	1 Revision Notes
	2 Scope
	3 Mechanical
	3.1 RW3-0.06 Mechanicals
	3.1.1 Mechanical Drawings
	3.1.1 Top View
	3.1.1.1 Side View
	3.1.1.2 Front View
	3.1.1.3 Bottom View
	3.1.1.4 Back View

	3.1.2 Mass Properties
	3.1.3 Remove Before Flight

	4 Environmental
	4.1 Storage
	4.2 Thermal
	4.3 Pressure
	4.4 Vibration

	5 Electrical
	5.1 Micro-D
	5.2 Programming Header

	6 Signals
	6.1 Address [0|1]
	6.2 CAN_A[H|L], CAN_B[H|L]
	6.3 RS485_0[A|B], RS485_1[A|B]
	6.4 V+[A|B]
	6.5 GND
	6.6 RW3-0.06 Power Architecture
	6.7 Regenerative Braking
	6.8 Bus Voltage Transient

	7 Protocol Layer 2 (Data Link Layer)
	7.1 Asynchronous Serial
	7.2 CAN

	8 Protocol Layer 3 (Network Layer)
	8.1 Asynchronous Serial NSP Encapsulation
	8.2 CAN NSP Encapsulation
	8.2.1 Redundant CAN Bus Selection
	8.2.2 CAN Object IDs
	8.2.3 Expedited Telecommands
	8.2.4 Expedited Telemetry
	8.2.5 Standard Transfers
	8.2.5.1 Start Message
	8.2.5.2 Continuation Message
	8.2.5.3 Acknowledge Message
	8.2.5.4 Network Management Message

	9 Protocol Layer 4 (Transport Layer)
	9.1 Command and Reply
	9.2 NSP Message Format
	9.3 NSP Addresses
	9.4 Wheel Address and Port Selection
	9.5 Default Addressing
	9.6 Message Control Field
	9.7 Data Field
	9.8 Message CRC
	9.9 Error Conditions

	10 Protocol Layer 5 (Session Layer)
	10.1 Operating Modes
	10.1.1 Bootloader to Application Transition
	10.1.2 Application to Bootloader Transition

	10.2 Power Switch Sequence
	10.2.1 Power Switch Sequence, Rev 8 and Earlier
	10.2.2 Power Switch Sequence, Rev 9 and Later

	10.3 Test Scripts
	10.4 Byte Order
	10.5 Command Codes
	10.6 PING (0x00)
	10.6.1 Command Format
	10.6.2 Reply Format

	10.7 INIT (0x01)
	10.7.1 Command Format
	10.7.2 Reply Format

	10.8 PEEK (0x02)
	10.8.1 Short Command Format
	10.8.2 Long Command Format
	10.8.3 Reply Format

	10.9 POKE (0x03)
	10.9.1 Command Format
	10.9.2 Reply Format

	10.10 DIAGNOSTIC (0x04)
	10.10.1 Command Format
	10.10.2 Reply Format

	10.11 CRC (0x06)
	10.11.1.1 Command Format
	10.11.1.2 Reply Format

	10.12 READ FILE (0x07)
	10.12.1 Command Format
	10.12.2 Reply Format
	10.12.2.1 Mode Reply Structure
	10.12.2.2 Normal Reply Structure

	10.13 WRITE FILE (0x08)
	10.13.1 Command Format
	10.13.1.1 Mode Store Structure
	10.13.1.2 Normal Store Structure

	10.13.1 Reply Format
	10.13.1.1 Mode Reply Structure
	10.13.1.2 Normal Reply Structure

	10.14 READ EDAC (0x09)
	10.14.1 Short Command Format
	10.14.2 Long Command Format
	10.14.3 Reply Format

	10.15 WRITE EDAC (0x0A)
	10.15.1 Command Format
	10.15.2 Reply Format

	10.16 GATHER EDAC (0X0B)
	10.16.1 Command Format
	10.16.1.1 Gather Command Structure

	10.16.1 Result Format
	10.16.1.1 Gather Result Structure

	11 Protocol Layer 6 (Presentation Layer)
	11.1 Memory Map
	11.2 Diagnostics
	11.2.1 Reset Reason
	11.2.2 Reset Count
	11.2.3 Framing Error
	11.2.4 Runt Packet
	11.2.5 Oversize Packet
	11.2.6 Bad CRC
	11.2.7 FIFO Overflow

	11.3 EDAC Memory
	11.3.1 Command Value
	11.3.2 VA
	11.3.3 PHASE_COMMON
	11.3.4 8V
	11.3.5 VDD, VCC
	11.3.6 CURRENT_PHASE[0|1|2]
	11.3.7 TEMP[0]
	11.3.8 TEMP[2|3]
	11.3.9 TEMP4
	11.3.10 SPEED
	11.3.11 MOMENTUM
	11.3.12 SCRUB_INDEX
	11.3.13 SEU_COUNT
	11.3.14 BUS_STATUS
	11.3.15 PWM
	11.3.16 HALL_DIGITAL
	11.3.17 CONTROL_TIME
	11.3.18 OSCILLATOR_CALIBRATE
	11.3.19 TARGET_CURRENT
	11.3.20 MEASURED_CURRENT
	11.3.21 SPEED_[P|I|D]_GAIN
	11.3.22 ADC_[I|P]_GAIN
	11.3.23 MIN_GAIN_SPEED, MAX_GAIN_SPEED
	11.3.24 TEST_TONE
	11.3.25 INERTIA
	11.3.26 MOTOR_KT
	11.3.27 GAIN_SCHEDULE[1..4]
	11.3.28 PROPORTIONAL_OVERRIDE
	11.3.29 CONTROL_TYPE
	11.3.30 BUS_MIN_THRESHOLD, BUS_MAX_THRESHOLD
	11.3.31 MAX_SPEED_AGE
	11.3.32 LIMIT_SPEED1
	11.3.33 LIMIT_SPEED2
	11.3.34 LIMIT_CURRENT
	11.3.35 TURNON_RATE
	11.3.36 OSCILLATOR_TOLERANCE
	11.3.37 CURRENT_BYPASS, BYPASS_GAIN, BYPASS_STEP
	11.3.38 SINUSOID_[PHASE, FREQ, OFFSET]
	11.3.39 PREVIOUS_SPEED
	11.3.40 SPEED_INTEGRATOR
	11.3.41 SPEED_LAST_ERROR
	11.3.42 ACCEL_TARGET
	11.3.43 HALL_TRANSITION
	11.3.44 TORQUE_[T0..T4]
	11.3.45 SFFT_STEP_NUMBER
	11.3.46 SFFT_STEP_TIMER
	11.3.47 SFFT_TELEM_COUNT
	11.3.48 CRC
	11.3.49 LOAD_SOURCE
	11.3.50 MODE
	11.3.51 Startup I/O, Floating I/O
	11.3.52 HALL_IMPOSSIBLE
	11.3.53 HALL_SKIP
	11.3.54 CONTROL_OVERFLOW
	11.3.55 SPEED_TABLE_SIZE
	11.3.56 USED_TABLE_SIZE
	11.3.57 SMBUS_ABORT
	11.3.58 SMBUS_TIMEOUT
	11.3.59 SMBUS_STOP
	11.3.60 IDLE_INHIBIT
	11.3.61 REALTIME_DELAY
	11.3.62 TEMPSENSE_INHIBIT
	11.3.63 BUSOFF_REASON
	11.3.64 ANALOG_HALL_DISABLE
	11.3.65 ADC_REGISTER_REFRESH
	11.3.66 CURRENT_FILTER, CURRENT_IIR_CONSTANT, CURRENT_THRESHOLD
	11.3.67 VOLTAGE_FILTER, VOLTAGE_IIR_CONSTANT, VOLTAGE_THRESHOLD

	11.4 Command Modes
	11.4.1 IDLE
	11.4.2 PWM
	11.4.3 CURRENT
	11.4.4 SPEED
	11.4.5 PWM_H[1..6]
	11.4.6 CURRENT_H[1..6]
	11.4.7 ACCEL
	11.4.8 MOMENTUM
	11.4.9 TORQUE
	11.4.10 BURNIN
	11.4.11 SFFT
	11.4.12 LIFE
	11.4.13 STORE_FILES
	11.4.14 DEFAULT_FILES
	11.4.15 PWM_P[0..2]
	11.4.16 SWITCH_OFF
	11.4.17 SWITCH_[A|B]
	11.4.18 SWITCH_HIGHEST
	11.4.19 SOAK
	11.4.20 REPEAT
	11.4.21 COMPLETE
	11.4.22 TORQUE_TEST
	11.4.23 CURRENT_TEST
	11.4.24 AUX1, AUX2
	11.4.25 BRAKE
	11.4.26 BRAKE_H[1..6]
	11.4.27 BLEND
	11.4.28 BLEND_H[1..6]
	11.4.29 SINUSOID

