
      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rev. 1.3, August 19, 2021 
Doug Sinclair 



      

 

1 Revision Notes ............................................................................................................ 6 
2 Scope ........................................................................................................................... 6 

3 Cautions ...................................................................................................................... 6 
3.1 UV LED [Rev 2A hardware only] ....................................................................... 6 

4 Mechanical .................................................................................................................. 7 
4.1 RW4-1.0 Mechanicals .......................................................................................... 7 

4.1.1 Mass Properties ............................................................................................. 8 

4.1.2 Remove Before Flight ................................................................................... 9 

5 Environmental ............................................................................................................. 9 
5.1 Storage .................................................................................................................. 9 
5.2 Thermal ................................................................................................................ 9 
5.3 Pressure ................................................................................................................ 9 

5.4 Vibration............................................................................................................... 9 

5.5 LED Lifetime [Rev 2A only] ............................................................................... 9 

6 Electrical ................................................................................................................... 10 
6.1 Micro-D .............................................................................................................. 10 
6.2 Programming Header ......................................................................................... 10 

7 Signals ....................................................................................................................... 10 
7.1 Address [0|1|2] ................................................................................................... 10 

7.2 RS485_0[A|B], RS485_1[A|B] .......................................................................... 11 
7.3 Primary Power, Primary Return ......................................................................... 11 
7.4 Secondary Return ............................................................................................... 11 
7.5 Power Architecture ............................................................................................. 12 

7.6 Undervoltage Limit ............................................................................................ 12 
7.7 Overvoltage Limit .............................................................................................. 12 

7.8 Regenerative Braking ......................................................................................... 13 
8 Protocol Layer 2 (Data Link Layer).......................................................................... 13 

8.1 Asynchronous Serial .......................................................................................... 13 

9 Protocol Layer 3 (Network Layer) ............................................................................ 14 
9.1 Asynchronous Serial NSP Encapsulation .......................................................... 14 

10 Protocol Layer 4 (Transport Layer) .......................................................................... 14 

10.1 Command and Reply ...................................................................................... 14 
10.2 NSP Message Format ..................................................................................... 14 

10.3 NSP Addresses ............................................................................................... 15 
10.4 Wheel Address and Port Selection ................................................................. 15 
10.5 Default RW4-1.0 Addressing ......................................................................... 15 

10.6 Message Control Field .................................................................................... 17 
10.7 Data Field ....................................................................................................... 17 

10.8 Message CRC ................................................................................................. 17 
10.9 Error Conditions ............................................................................................. 18 

11 Protocol Layer 5 (Session Layer) ............................................................................. 18 
11.1 Operating Modes ............................................................................................ 18 

11.1.1 Bootloader to Application Transition ......................................................... 18 

11.1.2 Application to Bootloader Transition ......................................................... 18 

11.2 Test Scripts ..................................................................................................... 19 



      

11.3 Byte Order ...................................................................................................... 19 
11.4 Command Codes............................................................................................. 19 
11.5 PING (0x00) ................................................................................................... 19 

11.5.1 Reply Format .............................................................................................. 19 
11.6 INIT (0x01)..................................................................................................... 20 

11.6.1 Command Format ....................................................................................... 20 
11.6.2 Command Format ....................................................................................... 20 
11.6.3 Reply Format .............................................................................................. 20 

11.7 PEEK (0x02)................................................................................................... 20 

11.7.1 Short Command Format .............................................................................. 21 
11.7.2 Long Command Format .............................................................................. 21 
11.7.3 Reply Format .............................................................................................. 21 

11.8 POKE (0x03) .................................................................................................. 21 

11.8.1 Command Format ....................................................................................... 21 

11.8.2 Reply Format .............................................................................................. 22 

11.9 DIAGNOSTIC (0x04) .................................................................................... 22 
11.9.1 Command Format ....................................................................................... 22 
11.9.2 Reply Format .............................................................................................. 22 

11.9.2.1 Diagnostic Result Structure ................................................................. 22 
11.10 CRC (0x06)..................................................................................................... 22 

11.10.1.1 Command Format ............................................................................... 22 
11.10.1.2 Reply Format ...................................................................................... 22 

11.11 READ FILE (0x07) ........................................................................................ 22 
11.11.1 Command Format .................................................................................... 23 

11.11.2 Reply Format ........................................................................................... 23 
11.11.2.1 Mode Reply Structure ........................................................................ 23 

11.11.2.2 Normal Reply Structure ..................................................................... 23 
11.12 WRITE FILE (0x08) ...................................................................................... 23 

11.12.1 Command Format .................................................................................... 23 

11.12.1.1 Mode Store Structure ......................................................................... 23 
11.12.1.2 Normal Store Structure....................................................................... 24 

11.12.1 Reply Format ........................................................................................... 24 

11.12.1.1 Mode Reply Structure ........................................................................ 24 
11.12.1.2 Normal Reply Structure ..................................................................... 24 

11.13 READ EDAC (0x09) ...................................................................................... 24 
11.13.1 Short Command Format .......................................................................... 24 
11.13.2 Long Command Format .......................................................................... 24 

11.13.3 Reply Format ........................................................................................... 24 
11.14 WRITE EDAC (0x0A) ................................................................................... 24 

11.14.1 Command Format .................................................................................... 24 
11.14.2 Reply Format ........................................................................................... 25 

11.15 GATHER EDAC (0X0B) ............................................................................... 25 
11.15.1 Command Format .................................................................................... 25 

11.15.1.1 Gather Command Structure ................................................................ 25 

11.15.1 Result Format .......................................................................................... 25 

11.15.1.1 Gather Result Structure ...................................................................... 25 



      

12 Protocol Layer 6 (Presentation Layer) ...................................................................... 25 
12.1 Fault Handling ................................................................................................ 25 
12.2 Memory Map .................................................................................................. 26 

12.2.1 Program RAM ............................................................................................. 26 
12.2.2 Data RAM ................................................................................................... 26 
12.2.3 Bootloader FRAM ...................................................................................... 26 
12.2.4 User FRAM ................................................................................................. 26 
12.2.5 Application Images ..................................................................................... 26 

12.2.6 Error Mitigation .......................................................................................... 27 

12.2.7 ECC Trap Words......................................................................................... 27 
12.3 Diagnostics ..................................................................................................... 27 
12.4 EDAC Memory............................................................................................... 29 

12.4.1 Command Value ......................................................................................... 32 

12.4.2 VBUS .......................................................................................................... 32 

12.4.3 VDD [Rev 3A only] .................................................................................... 32 

12.4.4 VCC ............................................................................................................ 33 
12.4.5 TEMP0 ........................................................................................................ 33 
12.4.6 TEMP1 [Rev 3A only] ................................................................................ 33 

12.4.7 TEMP[2|3] .................................................................................................. 33 
12.4.8 TEMP_R[0|2|3] ........................................................................................... 33 

12.4.9 SPEED ........................................................................................................ 33 
12.4.10 MOMENTUM ......................................................................................... 33 
12.4.11 HALL_DIGITAL .................................................................................... 33 
12.4.12 ADC_CALIBRATE ................................................................................ 34 

12.4.13 SPEED_[P|I|D]_GAIN ............................................................................ 34 
12.4.14 MIN_GAIN_SPEED, MAX_GAIN_SPEED ......................................... 34 

12.4.15 INERTIA ................................................................................................. 34 
12.4.16 MOTOR_KT ........................................................................................... 34 
12.4.17 GAIN_SCHEDULE[1..4] ....................................................................... 34 

12.4.18 PROPORTIONAL_OVERRIDE ............................................................ 35 
12.4.19 CONTROL_TYPE .................................................................................. 35 

12.4.20 MAX_SPEED_AGE ............................................................................... 35 

12.4.21 LIMIT_SPEED........................................................................................ 36 
12.4.22 LIMIT_CURRENT ................................................................................. 36 

12.4.23 MOTOR_RESISTANCE ........................................................................ 36 
12.4.24 SINUSOID_[PHASE, FREQ, OFFSET] ................................................ 36 
12.4.25 PREVIOUS_SPEED ............................................................................... 36 

12.4.26 SPEED_INTEGRATOR ......................................................................... 36 
12.4.27 SPEED_LAST_ERROR ......................................................................... 36 

12.4.28 ACCEL_TARGET .................................................................................. 36 
12.4.29 TORQUE_[T0..T4] ................................................................................. 36 
12.4.30 SLEEP_DUTY ........................................................................................ 37 
12.4.31 DCDC_FREQ.......................................................................................... 37 

12.4.32 LED_FREQ, LED_DUTY ...................................................................... 37 

12.4.33 DRIVE_FREQ ........................................................................................ 37 

12.4.34 DCDC_SLOPE and DCDC_OFFSET .................................................... 37 



      

12.4.35 RESPONSE_AMPLITUDE, RESPONSE_PHASE ............................... 37 
12.4.36 FAULT_OVERTEMP[0|3] ..................................................................... 37 
12.4.37 FAULT_UNDERTEMP2........................................................................ 38 

12.4.38 FAULT_TEMP_DELTA ........................................................................ 38 
12.4.39 FAULT_OVERSPEED ........................................................................... 38 
12.4.40 FAULT_OVERCURRENT .................................................................... 38 
12.4.41 KT_ESTIMATE, R_ESTIMATE ........................................................... 38 
12.4.42 DRY_FRICTION_ESTIMATE, WET_FRICTION_ESTIMATE, 

AERO_FRICTION_ESTIMATE, RUNDOWN_TIME ........................................... 39 

12.4.43 MODE ..................................................................................................... 39 
12.4.44 HALL_IMPOSSIBLE ............................................................................. 39 
12.4.45 HALL_SKIP............................................................................................ 39 
12.4.46 CONTROL_OVERFLOW ...................................................................... 39 

12.4.47 SPEED_TABLE_SIZE ........................................................................... 39 

12.4.48 USED_TABLE_SIZE ............................................................................. 40 

12.4.49 IDLE_INHIBIT ....................................................................................... 40 
12.4.50 FLAGS_ACTIVE.................................................................................... 40 
12.4.51 FAULTS_MASK .................................................................................... 40 

12.4.52

 FLAG_[OVERTEMP0|UNDERTEMP2|OVERTEMP3|OVERSPEED|O

VERCURRENT|HALL_ERROR] ............................................................................ 41 
12.4.53 ADC_RAW_[VBUS|VCC|TEMP0|TEMP2|TEMP3|CALIBRATE] ..... 41 
12.4.54 HALT ...................................................................................................... 41 
12.4.55 RESET_ENABLE ................................................................................... 41 

12.4.56 RESTART_MASK.................................................................................. 42 
12.4.57 STARTUP_DELAY................................................................................ 42 

12.4.58 LOCKUP ................................................................................................. 42 
12.5 Command Modes ............................................................................................ 42 

12.5.1 IDLE ........................................................................................................... 43 

12.5.2 PWM ........................................................................................................... 43 
12.5.3 VOLTAGE .................................................................................................. 43 

12.5.4 SPEED ........................................................................................................ 43 

12.5.5 PWM_H[1..6] ............................................................................................. 43 
12.5.6 VOLTAGE_H[1..6] .................................................................................... 43 

12.5.7 ACCEL ....................................................................................................... 44 
12.5.8 MOMENTUM ............................................................................................ 44 
12.5.9 TORQUE .................................................................................................... 44 

12.5.10 STORE_FILES........................................................................................ 44 
12.5.11 DEFAULT_FILES .................................................................................. 44 

12.5.12 PWM_P[0..2] .......................................................................................... 44 
12.5.13 SINUSOID_SPEED ................................................................................ 45 
12.5.14 SINUSOID_VOLTAGE ......................................................................... 45 
12.5.15 RUNDOWN ............................................................................................ 45 

13 Special Features ........................................................................................................ 45 

13.1 Virtual Oscilloscope ....................................................................................... 45 

13.2 Inducing Processor Faults ............................................................................... 46 



      

13.3 Autonomous Restart ....................................................................................... 46 

 

1 Revision Notes 
This revision of the document contains the following changes relative to the previously 

released version (1.2): 

• Added this Revision Notes section. All subsequent sections renumbered and 

respaced. 

• Updated Section 12.5.15 Rundown to update the test sequence. 

2 Scope 
This document details the mechanical, electrical and software interfaces for the fourth 

generation Sinclair Interplanetary reaction wheels.  At present these include: 

• RW4-1.0-28-RS485 Rev 2A 

• RW4-1.0-14-RS485 Rev 3A 

• RW4-1.0-28-RS485 Rev 3A 

 

3 Cautions 

3.1 UV LED [Rev 2A hardware only] 

The wheel contains an internal 100 uW LED with a wavelength centered at 255 nm.  This 

can be used to neutralize charge accumulated in the rotor. 

The LED is a hazard to both eyes and skin.  The wheel is nominally enclosed, but there 

may be cracks between panels that can let UV light out. 

Failure of the drive circuit could result in optical power outputs up to 2 mW. 



      

4 Mechanical 

4.1 RW4-1.0 Mechanicals 

 

 



      

 
 

The reaction wheel attaches to the host spacecraft through four mounting holes.  Each is 

5.3 mm in diameter.  They are sized to accept M5 or #10 hardware at the customer’s 

option.  The flange thickness is 7.5 mm. 

 

Eight threaded holes are provided in the top of the wheel for convenience in attaching 

cable harnesses, etc. 

4.1.1 Mass Properties 
Table 1: RW4-1.0 Mass Properties 

Total Mass 1380 g 

CG Location 22 mm above mounting plane on axis 

 



      

4.1.2 Remove Before Flight 

The following items may be removed before flight: 
Table 2: RW4-1.0 Remove Before Flight Items 

Item Remove? Notes 

Connector dust cover Must remove  

Connector saver Should remove if 

fitted 

Remove with 1/8” wrench, or 

specially modified 1/8” nut 

driver 

 

5 Environmental 

5.1 Storage 

The wheel must be stored in a clean environment to keep dust out of the bearings.  The 

humidity must be kept low to prevent corrosion of the steel rotor. 

The RW4-1.0 contains ETFE (Tefzel) wiring which will slowly out-gas fluorine.  It may 

be sealed in a bag for short periods, such as during shipping, but should be stored in a 

ventilated space for longer periods.  

5.2 Thermal 
Table 3: Allowable Temperature Range 

Survival Temperature -40C to +100C 

Operating Temperature (short term) -40C to +90C at interface 

Operating Temperature (long term) -20C to +70C at interface 

Table 3 shows the allowed temperature range for the wheel.  Short term operating 

temperatures are permitted for periods of hours to days, while long term operating 

temperatures are permitted for the many years of a mission. 

5.3 Pressure 

The wheel will operate in sea-level atmosphere and in hard vacuum.  It has not been 

qualified to operate at high altitude atmospheres, and should not be powered during ascent 

unless additional testing is performed to show that there is no danger of arcing. 

All materials meet the standard outgassing requirements of TML < 1%, CVCM < 0.1%. 

5.4 Vibration 

The wheel is designed to survive typical launch environments.  The RW4-1.0 has been 

qualified to GEVS protoflight (14.1 Grms for 2 mins/axis). 

5.5 LED Lifetime [Rev 2A only] 

The UV LED is rated for a typical lifetime of 8000 hours, or approximately 1 year.  Most 

missions require a longer lifetime than this.  The duty cycle should be reduced 

accordingly.  For example, at 10% drive duty cycle we could expect a 10 year typical 

lifetime. 



      

The lifetime number is probably conservative.  It is rated for a 20 mA drive current, 

whereas the RW4 uses a fixed 10 mA drive current.  At a drive current of 100 mA it is 

rated for 1000 hours minimum lifetime, 3000 hours typical. 

6 Electrical 

6.1 Micro-D 

The RW4-1.0 is fitted with a 15-socket micro-D connector. 

 
Table 4: RW4-1.0 Micro-D Connector Pinout 

Pin Name 

1 Address 1 

2 Address 2 

3 Secondary Return 

4 RS485_0_A 

5 Secondary Return 

6 Primary Return 

7 Primary Return 

8 Primary Power 

9 Address 0 

10 RS485_1_B 

11 RS485_1_A 

12 RS485_0_B 

13 Primary Return 

14 Primary Power 

15 Primary Power 

 

6.2 Programming Header 

Each wheel has a programming header on the PCA.  These are for factory use, and allow 

the processor bootloader to be programmed.  Customers should not use these without 

explicit factory advice. 

7 Signals 

7.1 Address [0|1|2] 
Table 5: Address Input Electrical Specifications 

Absolute Maximum, RW4-1.0 ±30 V, WRT Secondary Return  

Input Resistance 4.75 k 

Pull-up 40 k nominal to +3.3 V 

The address inputs allow the network address of the wheel to be set.  Inputs must either be 

left open-circuit (digital ‘1’) or connected to Secondary Return (digital ‘0’). 

The pull-up may only be active a turn-on.  Once the wheel has determined its address, it 

may disable the pull-up. 



      

7.2 RS485_0[A|B], RS485_1[A|B] 
Table 6: RS485 Electrical Specifications 

Absolute Maximum -9 V to +13 V, each signal WRT Secondary 

Return 

ESD rating ±20 kV (Human-body model) 

Polarity B > A in Mark (Idle) state 

A > B in Space (ON) state 

Differential Output Voltage > 1.5 V into 54  termination. 

Short-circuit Output Current 250 mA max 

Input Resistance > 48 k each signal 

Input Differential Threshold -0.20 V to -0.01 V 

 

Each pair is an RS485 signal.  They may be used as two half-duplex 2-wire buses, or used 

together as a 4-wire bus.  As a 4-wire bus, the wheel is interoperable with legacy RS422 

signals. 

7.3 Primary Power, Primary Return 
Table 7: Primary Power Electrical Specifications, 28 V power option 

Absolute Maximum -65 V to +63 V, WRT Primary Return 

Time above overvoltage threshold shall be limited to 

0.5 sec pulses at no more than 10% duty-cycle 

Operating Range +22 V to +34 V, WRT Primary Return 

Isolation from Chassis 100 nF, in parallel with 1 M 

100 V Hipot test permissible 

 

Table 8: Primary Power Electrical Specifications, 14 V power option 

Absolute Maximum -65 V to +35 V, WRT Primary Return 

Time above overvoltage threshold shall be limited to 

0.5 sec pulses at no more than 10% duty-cycle 

Operating Range +11 V to +17 V, WRT Primary Return 

Isolation from Chassis 100 nF, in parallel with 1 M 

100 V Hipot test permissible 

 

All wheels have a Primary Power input, which is returned on the Primary Return. 

7.4 Secondary Return 
Table 9: Secondary Return Electrical Specifications 

Connection to Chassis Direct connection 

 

The RW4-1.0 has a galvanically isolated DC/DC converter, and makes its Secondary 

Return available on the connector.  Secondary Return is also locally connected to Chassis. 



      

7.5 Power Architecture 

 
Figure 1: RW4 Power Block Diagram 

7.6 Undervoltage Limit 
Table 10: Undervoltage Limit, 28 V Option 

Turn-on Voltage +20.7 V max 

Turn-off Voltage +14.5 V min 

 
Table 11: Undervoltage Limit, 14 V Option 

Turn-on Voltage +10.5 V max 

Turn-off Voltage +7.6 V min 

 

The power supply uses an undervoltage lockout (UVLO) circuit to prevent brownout 

behaviour at low input voltages.  There is a large hysteresis on the limit to prevent 

oscillation. 

When the input voltage is too low, the DC/DC converter is inhibited and no power will 

reach the secondary circuits.  The startup regulator and oscillator will remain active, so a 

modest input current will remain. 

7.7 Overvoltage Limit 
Table 12: Overvoltage Limit, 28 V Option 

Overvoltage Limit +52.6 V typ @ 25 C 



      

Temperature Variation +46.6 to +57.2 mV/K 

 
Table 13: Overvoltage Limit, 14 V Option 

Overvoltage Limit +28.6 V typ @ 25 C 

Temperature Variation +21.4 to +25.3 mV/K 

 

The power supply uses an overvoltage limit circuit to prevent damage from very high bus 

voltages.  This circuit is implemented with a simple Zener diode, and thus has a 

significant temperature variation – the limit voltage increases with increasing 

temperature. 

There is no hysteresis on the limit, and so chatter may be possible.  Activation of this 

circuit should only happen in an emergency, so this is considered acceptable. 

The startup regulator and oscillator remain active in an overvoltage condition.  In this 

case the power dissipated in the startup linear regulator can become significant: maybe 10 

mA across a 45 V drop.  The startup regulator does not have overtemperature protection, 

so the time spent in the overvoltage condition must be strictly limited. 

7.8 Regenerative Braking 

The wheel makes use of regenerative braking when slowing the rotor under moderate 

torque.  This will result in the wheel consuming a net negative amount of power, pushing 

current back out onto the spacecraft power bus.  The spacecraft power system design must 

be able to deal with this. 

In an emergency, if the power line becomes disconnected from the power system (such as 

if turned off via a relay switch) regeneration will increase the voltage at the wheel until the 

overvoltage threshold is reached.  This will cause the wheel to reset and cease regeneration. 

8 Protocol Layer 2 (Data Link Layer) 

8.1 Asynchronous Serial 

The RS485 communications ports use an asynchronous serial protocol.  The parameters 

are programmed into the unit bootloader at the factory, and special-order units with 

different parameters are available. 

Table 14: Default Asynchronous Serial Parameters 

Nominal Baud Rate 115200 bps, unless special order (See EIDP) 

Data bits per byte 8 

Parity None 

Stop bits 1 

Each word begins with a start bit with space (0) value.  Eight data bits follow, with the LSB 

sent first and the MSB last.  Finally, a stop bit is sent with mark (1) value.  Once the stop 

bit has concluded the output transmitter may be disabled if there are no further words to 

follow. 

The RW4-1.0 baud rate is driven from a crystal oscillator, and should be highly accurate 

and stable over the lifetime of the unit. 



      

9 Protocol Layer 3 (Network Layer) 
NSP is the Nanosatellite Protocol, originally developed at UTIAS/SFL for use on the CanX 

nanosatellites.  This in turn is descended from the Simple Serial Protocol (SSP) used by 

UTIAS/SFL and Dynacon on the MOST and CHIPSAT spacecraft as well as the Dynacon 

reaction wheels in the wider market. 

The reaction wheel uses NSP messages for all communication. 

9.1 Asynchronous Serial NSP Encapsulation 

NSP messages are encapsulated for transmission on an asynchronous serial channel using 

SLIP framing, as described in RFC 1055.  This is required in order to indicate the beginning 

and end of NSP messages. 

Table 15: SLIP Framing Special Characters 

FEND 0xC0 

FESC 0xDB 

TFEND 0xDC 

TFSEC 0xDD 

Each NSP message is transmitted with a FEND character added to the beginning and end.  

Whenever FEND would occur within the message it is replaced by two bytes: FESC 

TFEND.  Whenever FESC would occur within the message it is replaced by FESC TFESC. 

10 Protocol Layer 4 (Transport Layer) 

10.1 Command and Reply 

The wheel generates telemetry messages in response to command messages received.  In 

the usual case, a single telemetry message will be sent as quickly as possible after reception 

of the command. 

Some commands will take a period of time to execute, and will only generate a telemetry 

message when they are complete.  The wheel should be considered to own the 

communications bus while such a command is executed, so do not send additional 

commands to it or any other unit until the reply is complete. 

While some NSP devices can generate multiple telemetry messages in response to a single 

command, the wheel will not.  The P/F bit will be set for all replies, indicating that they 

are stand-alone final messages. 

Nonwithstanding the above, the wheel will not generate messages that are not linked to a 

command.  The host spacecraft must poll it to determine its status and to read telemetry. 

10.2 NSP Message Format 
Table 16: NSP Message Fields 

Length Field 

1 byte Destination Address 

1 byte Source Address 

1 byte Message Control Field 

0 or more bytes Data Field 



      

2 bytes Message CRC 

Each NSP message has the format shown above.  The shortest possible messages are 5 

bytes (with zero data, not counting framing). 

The wheel supports a maximum data length of 1028 bytes, giving a total message length 

of 1033 bytes.  Note that network-layer framing may add additional bytes to the message 

as it is transmitted. 

10.3 NSP Addresses 

All NSP messages contain a destination and a source address.  A reply message will be 

sent with a destination address equal to the source address of its command message.  

Similarly, the source address will be set equal to the destination address from the command. 

The user is free to pick one or more NSP addresses for flight computers and other units 

that may talk to the wheel.  Avoid choosing the SLIP framing characters FEND (0xC0) 

and FESC (0xDB), as well as the reserved address 0x00.  By convention the flight computer 

would normally use NSP address 0x11. 

The wheel pays no particular attention to the source address of commands, and will accept 

commands from any unit on the bus. 

10.4 Wheel Address and Port Selection 

The wheel bootloader may support incoming communication on a number of 

communication ports: potentially up to two RS485 ports.  In addition, there may be cases 

where outgoing reply packets are sent on a different port from the command packet.  For 

example, a 4-wire RS485 link can be implemented by receiving commands on one 2-wire 

RS485 port and sending replies on a different 2-wire RS485 port. 

A wheel may respond to different NSP addresses on different ports.  On any given port, 

incoming commands with different NSP addresses may cause replies to be issued on 

different ports.  See the unit-specific EIDP for full information on the available ports and 

their addresses. 

The RW4 has two NSP state machines, and can handle simultaneous interactions on both 

ports.  There are two possible contention situations: 

• If a reply is generated on a port that is currently receiving an incoming message, 

the incoming message is abandoned and the reply is sent out.  This probably results 

in an RS485 bus contention. 

• If a reply is generated on a port that is already sending out a reply, the reply in 

progress is not interrupted.  The new reply is abandoned – there is no attempt to 

queue it. 

Contention should not occur in a well-managed spacecraft. 

10.5 Default RW4-1.0 Addressing 

Unless otherwise specified in the procurement documentation and the unit EIDP, the 

wheel uses the following NSP addresses: 



      

Table 17: RW4-1.0 Default Addressing 

Address 0 Address 1 Address 2 NSP Address Command 

Port 

Telemetry Port 

Short Short Short 0x40 RS485_0 RS485_1 

Short Short Short 0x50 RS485_1 RS485_1 

Short Short Short 0x60 RS485_0 RS485_0 

Short Short Short 0x70 RS485_1 RS485_0 

Open Short Short 0x41 RS485_0 RS485_1 

Open Short Short 0x51 RS485_1 RS485_1 

Open Short Short 0x61 RS485_0 RS485_0 

Open Short Short 0x71 RS485_1 RS485_0 

Short Open Short 0x42 RS485_0 RS485_1 

Short Open Short 0x52 RS485_1 RS485_1 

Short Open Short 0x62 RS485_0 RS485_0 

Short Open Short 0x72 RS485_1 RS485_0 

Open Open Short 0x43 RS485_0 RS485_1 

Open Open Short 0x53 RS485_1 RS485_1 

Open Open Short 0x63 RS485_0 RS485_0 

Open Open Short 0x73 RS485_1 RS485_0 

Short Short Open 0x44 RS485_0 RS485_1 

Short Short Open 0x54 RS485_1 RS485_1 

Short Short Open 0x64 RS485_0 RS485_0 

Short Short Open 0x74 RS485_1 RS485_0 

Open Short Open 0x45 RS485_0 RS485_1 

Open Short Open 0x55 RS485_1 RS485_1 

Open Short Open 0x65 RS485_0 RS485_0 

Open Short Open 0x75 RS485_1 RS485_0 

Short Open Open 0x46 RS485_0 RS485_1 

Short Open Open 0x56 RS485_1 RS485_1 

Short Open Open 0x66 RS485_0 RS485_0 

Short Open Open 0x76 RS485_1 RS485_0 

Open Open Open 0x47 RS485_0 RS485_1 

Open Open Open 0x57 RS485_1 RS485_1 

Open Open Open 0x67 RS485_0 RS485_0 

Open Open Open 0x77 RS485_1 RS485_0 

 

Short = Address pin shorted to Secondary Return in the harness 

Open = Address pin left unconnected 

 

In the normal spacecraft configuration with four reaction wheels, it is advised that the 

following addresses be used: 

• X1 

• X2 

• X4 

• X7 



      

In the event of a failure of any one address input pin or harness straps the wheel will go 

to one of these addresses: 

• X0 

• X3 

• X5 

• X6 

Thus, a single failure will never place two wheels at identical addresses.  [This is a fancy 

way of saying that the recommended addresses have a Hamming distance of >1 bit 

between them.]  

10.6 Message Control Field 
Table 18: Message Control Field 

Bit 7 (MSB) “Poll/Final” Bit 

Bit 6 “B” Bit 

Bit 5 “ACK” Bit 

Bits 4 – 0 Command code 

The message control field packs four values into a single byte.  The command code is an 

enumerated value between 0x00 and 0x1F that determines how the data field should be 

interpreted. 

The “ACK” bit is ignored on commands coming into the wheel.  On telemetry reply 

messages sent by the wheel it is set to indicate successful execution of the command, or 

cleared to indicate that the command cannot be executed. 

The “B” bit is copied unchanged from a command message into its reply message.  The 

wheel does not use it internally. 

The “Poll/Final” bit is interpreted differently for command and telemetry messages.  For a 

command, the bit is “Poll”.  If it is set to ‘1’ then the wheel will generate a telemetry 

message in reply.  If it is cleared to ‘0’ then the command will be executed, but no response 

telemetry message will be sent. 

For a telemetry message, the bit is “Final”.  If a reply consists of a single telemetry message, 

then the bit is set to ‘1’.  If a reply is too large to fit into a single message then the final 

message has the bit set to ‘1’ and the others have the bit cleared to ‘0’.  This reaction wheel 

will never send out messages with the final bit cleared to ‘0’. 

10.7 Data Field 

The interpretation of the data field is dependent on the command code in the message 

control field.  Some command codes may have no data, some may require a certain fixed 

number of data bytes, and some can accept a variable data length. 

10.8 Message CRC 

Each NSP message contains a 2 byte (16-bit) CRC to guard against errors in transmission.  

The 16-bit CCITT polynomial is used: x^16 + x^12 + x^5 + 1.  The initial shift register 

value is 0xFFFF.  Bytes are fed into the CRC computation starting with the destination 

address, and concluding with the last byte of the data field.  Within a byte, bits are fed in 

LSB first. 



      

The following fragment of C code, courtesy of Henry Spencer, illustrates how the CRC 

can be computed. 

#define POLY 0x8408 /* bits reversed for LSB-first */ 

unsigned short crc = 0xffff; 

while (len-- > 0) { 

unsigned char ch = *bufp++; 

for (i = 0; i < 8; i++) { 

crc = (crc >> 1) ˆ ( ((ch ˆ crc) & 0x01) ? POLY : 0 

); 

ch >>= 1; 

} 

} 

10.9 Error Conditions 

The wheel will ignore NSP command messages where the destination address does not 

correspond to its own NSP address.  NSP messages with invalid CRC, invalid 

encapsulation, too short or too long are also ignored.  In none of these cases will any reply 

message be generated. 

If an NSP command message is in error due to an unknown command code, or if the data 

field is not consistent with the requirements of the command code, and if the “Poll” bit is 

set, then a NACK reply message will be generated.  This message will be the same length 

as the command message, and contain the same data field.  The command code will be the 

same, as will the “B” bit.  The “ACK” bit will be cleared to ‘0’. 

11 Protocol Layer 5 (Session Layer) 

11.1 Operating Modes 

 
Figure 2: Mode Transition Diagram 

Power-on starts the unit in bootloader mode. 

11.1.1 Bootloader to Application Transition 

The wheel will transition from bootloader to application mode upon receipt of an INIT 

command. 

11.1.2 Application to Bootloader Transition 

Any transition from application mode to bootloader mode is accomplished through a 

processor reset.  Reset is caused by the following conditions: 

• An undervoltage is detected on Primary Power 

• An overvoltage is detected on Primary Power 

• An “INIT” command with no data is received. 

• An exception or unexpected interrupt occurs 

The DIAGNOSTIC command can be used to get information on the most recent reset. 

Bootloader Application 



      

11.2 Test Scripts 

The reaction wheel contains a number of preprogrammed test scripts.  These are used in 

the factory for initial characterization and pass/fail acceptance testing.  They can also be 

used by customers to verify the health of the wheel during integration and on-orbit. 

Test script details are TBC. 

11.3 Byte Order 

All multi-byte values transported in the data field of NSP messages are in little-endian 

format.  That is, the least-significant byte is stored first, and the most-significant byte is 

stored last. 

11.4 Command Codes 
Table 19: Command Codes 

Command Code Command Bootloader Application 

0x00 PING Yes Yes 

0x01 INIT Yes Yes 

0x02 PEEK Yes Yes 

0x03 POKE Yes Yes 

0x04 DIAGNOSTIC Yes Yes 

    

0x06 CRC Yes Yes 

0x07 READ FILE No Yes 

0x08 WRITE FILE No Yes 

0x09 READ EDAC No Yes 

0x0A WRITE EDAC No Yes 

0x0B GATHER EDAC No Yes 

 

The table above shows the command codes that can be used by the host spacecraft to 

communicate with the wheel. 

11.5 PING (0x00) 

The PING command is typically used during testing to verify communications.  Incoming 

data is ignored.  The reply packet contains a human-readable text string containing: 

• The type of device and the manufacturer 

• The compile time and date of the bootloader software 

• The compile time and date, and the identity, of the application software if running 

11.5.1 Reply Format 

 

Bytes 0 – N Human-readable ASCII string.  No NULL termination. 



      

11.6 INIT (0x01) 

The INIT command is used to change the operating mode of a wheel.  In all cases, if a reply 

has been requested (“Poll” bit set to ‘1’) then the reply will be sent before the processor 

state is changed. 

The wheel will respond to an INIT with no data by completely resetting the device, 

returning to bootloader mode.  Otherwise, an INIT command should have 4 bytes of data. 

As a special case, the command INIT 0xDEADBEEF is used once in the factory to write-

protect the bootloader FRAM.  The bootloader FRAM can only be unlocked by issuing a 

POKE while the /WP pin on the test connector is held high. 

An INIT command with an address will be NACKed if the device is not in bootloader 

mode. 

An INIT command with an address in the bootloader or user FRAM will cause an 

application image to be loaded from FRAM into RAM (see application image section for 

format).  Once the application has been loaded, the processor will branch to the specified 

starting point and run the program.  In the special case where the starting point is zero, no 

jump will be made and the processor will remain in bootloader mode. 

An INIT command with an address in either RAM area will cause a program branch to that 

address.  It is assumed that a program resides at that address: either copied from FRAM by 

a previous command, or loaded from the first 128 kB of bootloader FRAM on a reset, or 

loaded directly from a series of POKEs. 

11.6.1 Command Format 

Bytes 0 – N Zero or more bytes, ignored by the NSP module 

11.6.2 Command Format 

Reboot command: 

No payload bytes 

 

Application start command: 

Bytes 0 – 3 32-bit integer address of program to start 

11.6.3 Reply Format 

Reboot reply: 

No payload bytes 

 

Application start reply: 

Bytes 0 – 3 32-bit integer address of program to be started 

 

11.7 PEEK (0x02) 

The PEEK command is used to read the device memory.  Short and long formats of this 

command are available for historical reasons.  Short commands can be distinguished from 

long commands by their lengths. 



      

PEEK access to FRAM can be of any length, and without alignment restriction, provided 

it does not cross the boundary from bootloader FRAM to user FRAM.  PEEKs to other 

memory areas must obey one of the following restrictions: 

• Length = 1 

• Length = 2, aligned to even address 

• Length = 4*N, aligned to multiple of 4 

PEEKs to unimplemented memory locations may be expected to generate hardfault 

exceptions. 

11.7.1 Short Command Format 

Bytes 0 – 3 32-bit address to start peeking data 

Byte 4 Number of bytes to read.  A value of 0 indicates that 256 bytes 

should be read. 

11.7.2 Long Command Format 

Bytes 0 – 3 32-bit address to start peeking data 

Byte 4 - 5 Number of bytes to read. 

11.7.3 Reply Format 

Bytes 0 – 3 32-bit address of the start of data 

Bytes 4 – N One or more bytes read from the target memory 

11.8 POKE (0x03) 

The POKE command is used to write the device memory. 

POKE access to FRAM can be of any length, and without alignment restriction, provided 

it does not cross the boundary from bootloader FRAM to user FRAM.  POKEs to other 

memory areas must obey one of the following restrictions: 

• Length = 1 

• Length = 2, aligned to even address 

• Length = 4*N, aligned to multiple of 4 

POKEs to unimplemented memory locations may be expected to generate hardfault 

exceptions.  POKEs to write-protected FRAM will not generate any sort of error return, 

but the target memory will not be altered. 

 

11.8.1 Command Format 

Bytes 0 – 3 32-bit address to start poking data 

Byte 4 – N 1 - 1024 bytes to write to the target memory 



      

11.8.2 Reply Format 

Bytes 0 – 3 32-bit address where data write began 

Bytes 4 – N 1 – 1024 bytes written to the target memory 

11.9 DIAGNOSTIC (0x04) 

The DIAGNOSTIC command gathers error counts and other useful data from the wheel. 

11.9.1 Command Format 

Byte 0 – N List of one or more address of the diagnostic channel to read, as 8-

bit integers 

11.9.2 Reply Format 

Byte 0 – N List of one or more diagnostic result structures 

11.9.2.1 Diagnostic Result Structure 

Bytes 0 Diagnostic channel read 

Bytes 1 – 4 Diagnostic value, generally as 32-bit integer 

11.10 CRC (0x06) 

CRC command is used to calculate a checksum on an area of memory.  The CRC uses the 

same 16-bit polynomial, with the same bit order, as is used for NSP messages. 

CRC addresses are not restricted as to alignment, for any of the memory areas.  A CRC 

must not cover both bootloader FRAM and user FRAM.  CRC access to unimplemented 

memory can be expected to generate hardfault exceptions. 

The CRC command can potentially be used to request the CRC of the wheel’s entire 

memory.  The worst case would be the CRC of a 256 kB FRAM chip which takes 340 

msec from command to reply (assuming no additional realtime processor load from the 

application program).  The application control loop may be stalled during this time, 

preventing fine speed control. 

11.10.1.1 Command Format 

Bytes 0 – 3 Address of the first byte to CRC as 32-bit integer 

Bytes 4 – 7 Address of the last byte to CRC as 32-bit integer 

11.10.1.2 Reply Format 

Bytes 0 – 3 Address of the first byte in CRC as 32-bit integer 

Bytes 4 – 7 Address of the last byte in CRC as 32-bit integer 

Bytes 8 – 9 CRC result as 16-bit integer 

11.11 READ FILE (0x07) 

The Read File command returns one or more “files”, which are four consecutive bytes of 

EDAC protected memory.  A read from address 0 is a special case, and an additional mode 

byte is returned. 



      

Note that because of the single byte of addressing, not all of the EDAC memory can be 

accessed by this command. 

When multiple telemetry files are read by a single command, they are guaranteed to be 

internally consistent (i.e. from the same control frame).  Files can be read in any order, and 

a single file can be read multiple times. 

11.11.1 Command Format 

Bytes 0-N List of EDAC addresses divided by 4 (0 – 255).  0 for mode, 1 – 

255 for normal. 

11.11.2 Reply Format 

Bytes 0-N List of File Reply structures.  The first byte of each structure 

determines its type. 

 

11.11.2.1 Mode Reply Structure 

Byte 0 0 

Byte 1 Command type read from EDAC 

Bytes 2 - 5 Command value read from EDAC 

11.11.2.2 Normal Reply Structure 

Byte 0 Non-zero EDAC address divided by 4 (1 – 255) 

Bytes 1 - 4 EDAC data bytes read from memory 

11.12 WRITE FILE (0x08) 

The Write File command stores one or more “files”, which are four consecutive bytes of 

EDAC protected memory.  A write to address 0 is a special case, and an additional mode 

byte is stored. 

Note that because of the single byte of addressing, not all of the EDAC memory can be 

accessed by this command. 

When multiple parameter files are written by a single command, they are guaranteed to be 

internally consistent (i.e. into the same control frame).  Files can be written in any order, 

and a single file can be written multiple times. 

If a Write File command fails due to improper formatting then no modification to EDAC 

memory is made. 

11.12.1 Command Format 

Bytes 0-N List of File Store structures.  The first byte of each structure 

determines its type. 

11.12.1.1 Mode Store Structure 

Byte 0 0 

Byte 1 Command type to store 



      

Bytes 2 - 5 Command value to store 

11.12.1.2 Normal Store Structure 

Byte 0 Non-zero EDAC address divided by 4 (1 – 255) 

Bytes 1 - 4 Data bytes to write to EDAC memory 

11.12.1 Reply Format 

Bytes 0-N List of File Reply structures.  The first byte of each structure 

determines its type. 

11.12.1.1 Mode Reply Structure 

Byte 0 0 

Byte 1 Command type read from EDAC 

Bytes 2 - 5 Command value read from EDAC 

11.12.1.2 Normal Reply Structure 

Byte 0 Non-zero EDAC address divided by 4 (1 – 255) 

Bytes 1 - 4 EDAC data bytes read from memory 

 

11.13 READ EDAC (0x09) 

The Read EDAC command returns bytes from EDAC memory.  The read process is atomic.  

Long and short command formats are available. 

11.13.1 Short Command Format 

Bytes 0 – 1 EDAC address to start reading 

Byte 2 Number of bytes to read.  A value of 0 indicates that 256 bytes 

should be read. 

11.13.2 Long Command Format 

Bytes 0 – 1 EDAC address to start reading 

Bytes 2 - 3 Number of bytes to read. 

11.13.3 Reply Format 

Bytes 0 – 1 EDAC address where reading started 

Bytes 2 – N The data bytes read from EDAC memory 

11.14 WRITE EDAC (0x0A) 

The Write EDAC command writes bytes into EDAC memory.  The write process is atomic. 

11.14.1 Command Format 

Bytes 0 – 1 EDAC address to start writing 

Bytes 2 – N Data bytes to write to EDAC memory 



      

11.14.2 Reply Format 

Bytes 0 – 1 EDAC address where writing started 

Bytes 2 – N The data bytes written to EDAC memory 

11.15 GATHER EDAC (0X0B) 

The Gather EDAC command allows multiple separate ranges of EDAC memory to be 

read in an atomic manner. 

11.15.1 Command Format 

Bytes 0 – N List of gather command structures 

 

11.15.1.1 Gather Command Structure 

Bytes 0 – 1 EDAC address to start reading 

Bytes 2 – 3 Number of bytes to read 

11.15.1 Result Format 

Bytes 0 – N List of gather result structures 

 

11.15.1.1 Gather Result Structure 

Bytes 0 – 1 EDAC address where reading started 

Bytes 2 – 3 Number of bytes read 

Bytes 4 – N Data bytes 

 

12 Protocol Layer 6 (Presentation Layer) 

12.1 Fault Handling 

The application program can detect 7 different fault conditions: 

• Motor windings overtemperature 

• Processor undertemperature 

• Drive transistors overtemperature 

• PCA temperature difference too large 

• Rotor overspeed 

• Motor overcurrent 

• Hall sensor error 

For the first 6, the fault threshold (temperature, speed, current) can be adjusted.  A Hall 

sensor error is declared when the HALL_IMPOSSIBLE or HALL_SKIP count 

increments.  Each of these fault conditions sets a unique fault flag.  Each fault can also be 

masked. 

If an unmasked fault occurs, the motor drive is turned off.  The rotor will slowly coast to 

a halt under friction alone. 



      

The user can detect a fault by reading FLAGS_ACTIVE.  The user can clear a fault by 

writing ‘0’ to the corresponding fault flag.  Once all fault flags are clear or masked, the 

wheel will resume normal function. 

Users are cautioned against clearing or masking faults without understanding the cause.  

The fault logic exists to protect the hardware.  For example, running at high torque with 

the overtemperature faults masked risks damaging the motor from overheat. 

12.2 Memory Map 
Table 20: Processor Memory Map 

Address Range Function 

0x00000000 – 0x0001FFFB Program RAM 

0x0001FFFC – 0x0001FFFF Program RAM ECC trap word 

0x10000000 – 0x10007FFB Data RAM 

0x10007FFC – 0x10007FFF Data RAM ECC trap word 

0x20000000 – 0x2003FFFF Bootloader FRAM 

0x20040000 – 0x2007FFFF User FRAM 

0x40000000 – 0xFFFFFFFF Hardware registers 

The processor memory can be directly accessed with PEEK and POKE commands, and 

CRCs calculated with CRC commands.  It is represented as a single 32-bit memory space, 

sparsely populated. 

12.2.1 Program RAM 

Code is executed from this memory.  At reset the first 128 kB of bootloader FRAM is 

copied into program RAM. 

12.2.2 Data RAM 

This memory is used as software scratchpad.  At power-up it is cleared to ‘0’.  It is not 

cleared by other resets. 

12.2.3 Bootloader FRAM 

This non-volatile memory is programmed at the factory, and then write-protected.  

Starting at the lowest address it stores the bootloader.  It may also store application 

programs and/or special test programs.  The bootloader FRAM cannot be changed by the 

user. 

12.2.4 User FRAM 

This non-volatile memory will be delivered from the factory with the application program 

loaded.  The program can be patched or replaced at any time using a sequence of POKE 

commands.  This permits software updates after delivery, and even on-orbit. 

12.2.5 Application Images 

Application image structures can be stored in FRAM, to be loaded and executed by INIT 

commands.  The format is: 
Table 21: Application Image Structure 

Offset Length Function 



      

0x00 4 RAM target address (32-bit unsigned integer) 

0x04 4 Data length (32-bit unsigned integer) 

0x08 4 Start address (32-bit unsigned integer) 

0x0C Variable 1 or more bytes of image data 

 

When an INIT command is executed on an application image the processor will copy a 

number of bytes equal to “Data length” from the “image data” field to the “RAM target 

address”.  It will then branch to the start address, which should be a pointer into RAM.  

In the special case that the start address is zero, no branch is made. 

No integrity checks are made on the image format.  Bad data (target address outside of 

RAM, data length too long, etc) will result in faults. 

12.2.6 Error Mitigation 

The RAM areas are protected from Single Event Upset (SEU) by hardware Error 

Correcting Codes (ECC).  Each 8-bit byte is stored along with a 5-bit syndrome code.  

When the byte is read, the syndrome is re-calculated.  Single-bit errors are automatically 

and transparently corrected and fixed.  Multi-bit errors cannot be fixed.  Both RAM areas 

are hardware scrubbed on a timescale of seconds. 

The FRAM areas are protected by a hardware power switch.  Whenever FRAM is not 

being used it is powered down.  When FRAM is required the switch is turned ON and a 1 

msec delay is observed before access.  In typical orbital use the FRAM is turned ON for 

380 msec after every reset, and is then OFF for normal operation. 

12.2.7 ECC Trap Words 

The last words in both of the RAM areas have their ECC compromised, as the stored 

syndrome code is always ‘0’.  When the stored word is ‘0’, the ECC shows no errors.  If a 

byte with a single ‘1’ bit is written, a single-bit error is simulated.  ECC hardware will 

correct the error.  If a byte with two ‘1’ bits is written, a multi-bit error is simulated.  

ECC hardware will count the error, but will be unable to correct it. 

The trap words can be used on the ground for self-test purposes.  These words should not 

be used for actual data storage. 

12.3 Diagnostics 

The diagnostics contain a series of read-only integers that relate to the health of the 

wheel. 
Table 22: Diagnostic Channels 

Diagnostic 

Channel 

Function Format 

0x00 Reset reason 32-bit enum: 

0: Power-on 

1: Reset pin 

2: Lockup 

3: Watchdog 

4: Memerr 

5: INIT command 

6: Hardfault exception 



      

7: Unknown 

0x01 Reset count 32-bit unsigned integer 

Value = 1 after power-on 

0x02 Data RAM SEU count 16-bit unsigned integer x 2 

Low bytes: Single bit error count 

High bytes: Multi bit error count 

0x03 Program RAM SEU count 16-bit unsigned integer x 2 

Low 2 bytes: Single bit error count 

High 2 bytes: Multi bit error count 

0x04 Bootloader retries count 

(from most recent reset) 

Byte 0: 8-bit unsigned integer 

Bytes 1-3: ‘0’ 

0x05 Serial number 

 

32-bit unsigned integer 

Unique, but maybe not sequential 

0x06 FRAM status bytes Byte 0: Bootloader FRAM status 

Byte 1: User FRAM status 

Bytes 2-3: ‘0’ 

0x07 RS485-0 NSP Framing error 

count 

32-bit unsigned integer 

0x08 RS485-0 Runt count 32-bit unsigned integer 

0x09 RS485-0 Oversize count 32-bit unsigned integer 

0x0A RS485-0 Bad CRC count 32-bit unsigned integer 

0x0B RS485-0 FIFO overflow 

count 

32-bit unsigned integer 

0x0C RS485-0 Incoming discarded 

count 

32-bit unsigned integer 

0x0D RS485-0 Outgoing discarded 

count 

32-bit unsigned integer 

0x0E RS485-1 NSP Framing error 

count 

32-bit unsigned integer 

0x0F RS485-1 Runt count 32-bit unsigned integer 

0x10 RS485-1 Oversize count 32-bit unsigned integer 

0x11 RS485-1 Bad CRC count 32-bit unsigned integer 

0x12 RS485-1 FIFO overflow 

count 

32-bit unsigned integer 

0x13 RS485-1 Incoming discarded 

count 

32-bit unsigned integer 

0x14 RS485-1 Outgoing discarded 

count 

32-bit unsigned integer 

0x15 Fault register R0 32-bit unsigned integer 

0x16 Fault register R1 32-bit unsigned integer 

0x17 Fault register R2 32-bit unsigned integer 

0x18 Fault register R3 32-bit unsigned integer 

0x19 Fault register R12 32-bit unsigned integer 

0x1A Fault register LR 32-bit unsigned integer 

0x1B Fault register PC 32-bit unsigned integer 



      

0x1C Fault register xPSR 32-bit unsigned integer 

0x1D Application restart address 32-bit pointer 

0x1E Application restart mask 32-bit bitmap: 

Bit 0: Restart even if previous 

restart faults 

Bit 1: Restart on reset pin 

Bit 2: Restart on lockup 

Bit 3: Restart on watchdog 

Bit 4: Reserved 

Bit 5: Reserved 

Bit 6: Restart on hardfault 

Bit 7: Restart on unknown reset 

 

FRAM status bytes can be expected as: 

Byte value Meaning 

0x40 FRAM chip is unlocked 

0xCC FRAM chip is write-protected 

 

RS485 port error counters are zeroed at power-on, but are not cleared at subsequent resets. 

The fault registers store the contents of the key processor registers at the moment of 

hardfault, memmanage, busfault and usagefault exceptions.  They may be used to help 

debug the cause of the fault.  Note that since the Data RAM is not cleared on an exception 

reset, it may be possible to use subsequent PEEKs to get more information about the 

machine state when the exception occurred. 

The application restart registers are zeroed when an application is called, and written by 

the application as desired.  After a reset, the bootloader looks at the restart mask to 

determine whether an autonomous application restart should be attempted.  If so, it jumps 

to the restart address. 

12.4 EDAC Memory 

For historical reasons, the memory area used to store commands and telemetry is referred 

to as “EDAC Memory”.  In older wheels, this special area was subject to software-based 

triple-voting and scrubbing.  In the new RW4 wheel every single flip-flop is protected 

against upset.  There is no more or less protection for the EDAC Memory, but the name is 

preserved. 

The memory area is 1536 bytes long.  EDAC memory can be read with READ EDAC, 

GATHER EDAC and READ FILE commands, and written with WRITE EDAC and 

WRITE FILE commands.  The MODE_STORE command will save EDAC memory into 

non-volatile User FRAM. 

Table 23: EDAC Memory Contents 

EDAC Address File 

Address 

Function Format 



      

0x000 – 0x003 0x00 Command Value Command 

Dependent 

0x00C – 0x00F 0x03 VBUS Volts (IEEE-754) 

0x01C – 0x01F 0x07 VDD [Rev 3A only] Volts (IEEE-754) 

0x020 – 0x023 0x08 VCC Volts (IEEE-754) 

0x040 – 0x043 0x10 TEMP0 °C (IEEE-754) 

0x044 – 0x047 0x11 TEMP1 [Rev 3A only] °C (IEEE-754) 

0x048 – 0x04B 0x12 TEMP2 °C (IEEE-754) 

0x04C – 0x04F 0x13 TEMP3 °C (IEEE-754) 

0x054 – 0x057 0x15 SPEED Rad/sec (IEEE-754) 

0x058 – 0x05B 0x16 MOMENTUM N-m/sec (IEEE-

754) 

0x068 – 0x06B 0x1A PWM Duty cycle (IEEE-

754) 

0x06C – 0x06F 0x1B HALL_DIGITAL Enum in IEEE-754 

float 

0x074 – 0x077 0x1D ADC_CALIBRATE Ratio [Rev 2A] or 

Hz [Rev 3A] 

(IEEE-754) 

0x080 – 0x083 0x20 SPEED_P_GAIN Amps / rad / sec 

(IEEE-754) 

0x084 – 0x087 0x21 SPEED_I_GAIN Amps / rad (IEEE-

754) 

0x088 – 0x08B 0x22 SPEED_D_GAIN Amps / rad / sec2 

(IEEE-754) 

0x094 – 0x097 0x25 MAX_GAIN_SPEED Rad/sec (IEEE-754) 

0x098 – 0x09B 0x26 MIN_GAIN_SPEED Rad/sec (IEEE-754) 

0x0A0 – 0x0A3 0x28 INERTIA kg-m2 (IEEE-754) 

0x0A4 – 0x0A7 0x29 MOTOR_KT N-m/A (IEEE-754) 

0x0A8 – 0x0AB 0x2A GAIN_SCHEDULE1 (IEEE-754) 

0x0AC – 0x0AF 0x2B GAIN_SCHEDULE2 (IEEE-754) 

0x0B0 – 0x0B3 0x2C GAIN_SCHEDULE3 (IEEE-754) 

0x0B4 – 0x0B7 0x2D GAIN_SCHEDULE4 (IEEE-754) 

0x0B8 – 0x0BB 0x2E PROPORTIONAL_OVERRIDE (IEEE-754) 

0x0BC – 0x0BF 0x2F CONTROL_TYPE (IEEE-754) 

0x0C8 – 0x0CB 0x32 MAX_SPEED_AGE sec (IEEE-754) 

0x0CC – 0x0CF 0x33 LIMIT_SPEED Rad/sec (IEEE-754) 

0x0D4 – 0x0D7 0x35 LIMIT_CURRENT Amps (IEEE-754) 

0x0E4 – 0x0E7 0x39 MOTOR_RESISTANCE Ohms (IEEE-754) 

0x0EC – 0x0EF 0x3B SINUSOID_PHASE Rad (IEEE-754) 

0x0F0 – 0x0F3 0x3C SINUSOID_FREQ Hz (IEEE-754) 

0x0F4 – 0x0F7 0x3D SINUSOID_OFFSET Rad/sec or Volts 

(IEEE-754) 

0x100 – 0x103 0x40 PREVIOUS_SPEED Rad/sec (IEEE-754) 

0x104 – 0x107 0x41 SPEED_INTEGRATOR Amps (IEEE-754) 



      

0x108 – 0x10B 0x42 SPEED_LAST_ERROR Rad/sec (IEEE-754) 

0x10C – 0x10F 0x43 ACCEL_TARGET Rad/sec (IEEE-754) 

0x12C – 0x12F 0x4B TORQUE_T0 Nm (IEEE-754) 

0x130 – 0x133 0x4C TORQUE_T1 Nm (IEEE-754) 

0x134 – 0x137 0x4D TORQUE_T2 Nm (IEEE-754) 

0x138 – 0x13B 0x4E TORQUE_T3 Nm (IEEE-754) 

0x13C – 0x13F 0x4F TORQUE_T4 Nm (IEEE-754) 

    

0x168 – 0x16B 0x5A SLEEP_DUTY Fraction (IEEE-

754) 

0x16C – 0x16F 0x5B DCDC_FREQ Hz (IEEE-754) 

0x170 – 0x173 0x5C LED_FREQ [Rev 2A only] Hz (IEEE-754) 

0x174 – 0x177 0x5D LED_DUTY [Rev 2A only] Fraction (IEEE-

754) 

0x178 – 0x17B 0x5E DRIVE_FREQ Hz (IEEE-754) 

0x17C – 0x17F 0x5F DCDC_SLOPE  

0x180 – 0x183 0x60 DCDC_OFFSET  

0x184 – 0x187 0x61 RESPONSE_AMPLITUDE Rad/sec (IEEE-754) 

0x188 – 0x18B 0x62 RESPONSE_PHASE Rad (IEEE-754) 

0x190 – 0x193 0x64 KT_ESTIMATE N-m/A (IEEE-754) 

0x194 – 0x197 0x65 R_ESTIMATE Ohms (IEEE-754) 

0x198 – 0x19B 0x66 DV_ESTIMATE Volts (IEEE-754) 

0x19C – 0x19F 0x67 DRY_FRICTION_ESTIMATE Nm (IEEE-754) 

0x1A0 – 0x1A3 0x68 WET_FRICTION_ESTIMATE N-m/rad/sec (IEEE-

754) 

0x1A4 – 0x1A7 0x69 AERO_FRICTION_ESTIMATE N-m/rad2/sec2 

(IEEE-754) 

0x1A8 – 0x1AB 0x6A RUNDOWN_TIME sec (IEEE-754) 

    

0x1C0 – 0x1C3 0x70 FAULT_OVERTEMP0 °C (IEEE-754) 

0x1C4 – 0x1C7 0x71 FAULT_UNDERTEMP2 °C (IEEE-754) 

0x1C8 – 0x1CB 0x72 FAULT_OVERTEMP3 °C (IEEE-754) 

0x1CC – 0x1CF 0x73 FAULT_TEMP_DELTA °C (IEEE-754) 

0x1D0 – 0x1D3 0x74 FAULT_OVERSPEED Rad/sec (IEEE-754) 

0x1D4 – 0x1D4 0x75 FAULT_OVERCURRENT Amps (IEEE-754) 

    

0x200 – 0x203 0x80 TEMP_R0 [Rev 2A only] Ohms (IEEE-754) 

0x204 – 0x207 0x81 TEMP_R2 [Rev 2A only] Ohms (IEEE-754) 

0x208 – 0x20B 0x82 TEMP_R3 [Rev 2A only] Ohms (IEEE-754) 

0x20C – 0x20F 0x83 ADC_RAW_VBUS Ratio (IEEE-754) 

0x210 – 0x213 0x84 ADC_RAW_VCC [Rev 2A 

only] 

Ratio (IEEE-754) 

0x214 – 0x217 0x85 ADC_RAW_TEMP0 [Rev 2A 

only] 

Ratio (IEEE-754) 



      

0x218 – 0x21B 0x86 ADC_RAW_TEMP2 [Rev 2A 

only] 

Ratio (IEEE-754) 

0x21C – 0x21F 0x87 ADC_RAW_TEMP3 [Rev 2A 

only] 

Ratio (IEEE-754) 

0x220 – 0x223 0x88 ADC_RAW_CALIBRATE [Rev 

2A only] 

Ratio (IEEE-754) 

    

0x5C3  MODE 8-bit enum 

0x5CE  HALL_IMPOSSIBLE 8-bit unsigned int 

0x5CF  HALL_SKIP 8-bit unsigned int 

0x5D0  CONTROL_OVERFLOW 8-bit unsigned int 

0x5D1  SPEED_TABLE_SIZE 8-bit unsigned int 

0x5D2  USED_TABLE_SIZE 8-bit unsigned int 

0x5D6  IDLE_INHIBIT 8-bit boolean 

0x5D7  FLAGS_ACTIVE 8-bit bitmap 

0x5D8  FAULTS_MASK 8-bit bitmap 

0x5D9  FLAG_OVERTEMP0 8-bit boolean 

0x5DA  FLAG_UNDERTEMP2 8-bit boolean 

0x5DB  FLAG_OVERTEMP3 8-bit boolean 

0x5DC  FLAG_TEMP_DELTA 8-bit boolean 

0x5DD  FLAG_OVERSPEED 8-bit boolean 

0x5DE  FLAG_OVERCURRENT 8-bit boolean 

0x5DF  FLAG_HALL_ERROR 8-bit boolean 

0x5E0  HALT 8-bit boolean 

0x5E1  RESET_ENABLE 8-bit bitmap 

0x5E2  RESTART_MASK 8-bit bitmap 

0x5E3  STARTUP_DELAY 8-bit integer 

0x5E4  LOCKUP 8-bit boolean 

 

12.4.1 Command Value 

Accessing file 0 causes an extra mode byte to be transferred.  By writing to this file the 

mode of the wheel can be commanded.  By reading this file the current mode can be 

determined.  The modes are enumerated in section 12.4.49. 

If this parameter is accessed through EDAC writes and reads instead of file reads and writes 

there is no explicit mode byte transferred.  It is possible to read and write the number 

associated with the command, but this is not advised. 

12.4.2 VBUS 

This read-only parameter returns the voltage on the primary power bus.  It is inferred by 

measuring the duty cycle of the DC/DC converter. 

12.4.3 VDD [Rev 3A only] 

This read-only parameter returns the voltage on the +1.6 V nominal secondary output 

from the DC/DC converter. 



      

12.4.4 VCC 

This read-only parameter returns the voltage on the +3.3 V nominal secondary output 

from the DC/DC converter. 

12.4.5 TEMP0 

This read-only parameter returns the temperature of the motor windings. 

The sensors are NTC devices, so an open-circuit failure causes an apparent low temperature 

reading. 

12.4.6 TEMP1 [Rev 3A only] 

This read-only parameter returns a second measurement of the motor windings.  It is only 

present on the Rev 3A hardware. 

12.4.7 TEMP[2|3] 

These read-only parameters return temperatures on the circuit board.  TEMP2 is located 

immediately next to the processor.  TEMP3 is located adjacent to the motor drive 

transistors. 

12.4.8 TEMP_R[0|2|3] 

These read-only parameters return the calculated thermistor temperatures, corresponding 

to TEMP0, TEMP2 and TEMP3.  The thermistors are specified at 10 kΩ at +25 C.  These 

parameters are intended primarily for initial factory calibration. 

12.4.9 SPEED 

This read-only parameter returns the speed of the rotor. 

12.4.10 MOMENTUM 

This read-only parameter returns the angular momentum of the rotor.  It is derived from 

the SPEED multiplied by INERTIA. 

12.4.11 HALL_DIGITAL 

This read-only parameter returns the state of the three digital Hall-effect sensors.  Each 

switch can be in one of two states: ‘0’ and ‘1’.  The state can be decoded from the following 

table: 

Table 24: Digital Hall-effect sensor status codes 

HALL_DIGITAL Hall 0 Hall 1 Hall 2 

0.0 0 0 0 

1.0 1 0 0 

2.0 0 1 0 

3.0 1 1 0 

4.0 0 0 1 

5.0 1 0 1 

6.0 0 1 1 

7.0 1 1 1 



      

 

Note that codes 0.0 and 7.0 should not be mechanically possible. 

12.4.12 ADC_CALIBRATE 

A read-only parameter, updated frequently from the self-calibrate cycle of the ADC. 

 

For the Rev 2A, it is roughly analogous to the input offset voltage of the ADC.  It will be 

a value, positive or negative, on the order of 0.01.  It varies with temperature. 

 

For the Rev 3A, it is the frequency of the resistance-to-frequency converter when looking 

at the calibration resistor.  Its nominal frequency is around 6,000 Hz. 

12.4.13 SPEED_[P|I|D]_GAIN 

These read-only parameters set the gains for the PID closed-loop speed controller.  See 

CONTROL_TYPE for the formula to determine the gains. 

12.4.14 MIN_GAIN_SPEED, MAX_GAIN_SPEED 

These read/write parameters bound the speed used as an input to the speed controller gain 

formula. 

By setting these two parameters to the same value the speed dependence of the gains can 

be effectively disabled. 

12.4.15 INERTIA 

This read/write parameter sets the rotor inertia.  It is used to scale between acceleration 

and torque, and momentum and speed. 

12.4.16 MOTOR_KT 

This read/write parameter sets the motor torque constant. 

12.4.17 GAIN_SCHEDULE[1..4] 

These four read/write parameters are used to set the speed control gains, in those cases 

when PROPORTIONAL_OVERRIDE is zero.  First, the characteristic speed  is 

determined based on the actual and setpoint speeds and on MAX_GAIN_SPEED and 

MIN_GAIN_SPEED. 

( )( )MAXMINettactualMAXMIN  ,,, arg=  

The critical gain and period are modeled as a function of the characteristic speed.  The four 

GAIN_SCHEDULE parameters are written as G1..G4. 

3

1

45.91

2

G

G

GHzPu

GKu





=

=
 

The gains are then set according to the Ziegler-Nichols method. 



      

KpPuKd

Pu
Kp

Ki

KuKp

=


=

=

125.0

0.2

6.0

 

12.4.18 PROPORTIONAL_OVERRIDE 

This read/write parameter is used to override the gain settings, usually in a factory gain 

tuning context.  When non-zero, the gains are set accordingly: 

0.0

0.0

_

=

=

=

Kd

Ki

OVERRIDEALPROPORTIONKp

 

12.4.19 CONTROL_TYPE 

This read/write parameter is used to determine the control type, using the Ziegler-Nichols 

method. 

The value stored in CONTROL_TYPE is truncated to an integer.  If the value is 1, a PI 

controller is used: 

0.0

2.1

45.0

=


=

=

Kd

Pu
Kp

Ki

KuKp

 

If the value is 2, a PID controller is used: 

KpPuKd

Pu
Kp

Ki

KuKp

=


=

=

125.0

0.2

6.0

 

In the case of any other value, a P controller is used: 

0.0

0.0

5.0

=

=

=

Kd

Ki

KuKp

 

12.4.20 MAX_SPEED_AGE 

This read/write parameter determines which digital Hall sensor transitions are used to 

determine the SPEED telemetry.  Transitions are discarded if they are older than 

MAX_SPEED_AGE in time, if a complete rotor revolution has occurred since them, or if 

a rotor direction reversal is detected. 

MAX_SPEED_AGE is relevant at very low rotor speeds.  A larger value will allow more 

Hall sensor transitions to be used, giving a less noisy speed estimate.  However, it will also 

increase the latency in speed measurements which may cause closed-loop speed control 

modes to become unstable. 



      

12.4.21 LIMIT_SPEED 

This read/write parameter sets the maximum speed that closed-loop modes will target.  The 

magnitude of the speed target used in speed, torque, momentum and acceleration modes is 

clamped to this value.  This is particularly significant in torque and acceleration modes – 

if communication with the flight computer is lost for any reason the rotor will slowly 

accelerate until this limit is reached. 

12.4.22 LIMIT_CURRENT 

This read/write parameter sets the greatest motor drive current used by closed-loop modes.  

Reducing this value will limit the torque that the wheel can generate. 

12.4.23 MOTOR_RESISTANCE 

This read/write parameter sets the motor nominal resistance. 

12.4.24 SINUSOID_[PHASE, FREQ, OFFSET] 

Please see SINUSOID mode for details. 

12.4.25 PREVIOUS_SPEED 

This read-only parameter contains the SPEED file from the previous control frame.  It is 

expected that it might be used in the future to generate torque telemetry, but at present it is 

unused. 

12.4.26 SPEED_INTEGRATOR 

This parameter contains the closed-loop controller integrator, scaled in amps of actuation.  

It is technically a read/write parameter, and it is possible for the user to write this for test 

purposes. 

12.4.27 SPEED_LAST_ERROR 

This read-only parameter contains the controller error from the previous control frame.  It 

is used with the differential gain term of the closed-loop controller. 

12.4.28 ACCEL_TARGET 

This parameter contains the speed setpoint used by the acceleration controller.  The 

controller will add the acceleration to this file each frame.  It is technically a read/write 

parameter, and it is possible for the user to write this as a way to force a new speed while 

remaining in acceleration/torque mode. 

12.4.29 TORQUE_[T0..T4] 

These five read-only parameters record the instantaneous torques measured in the last 

five control frames.  T0 is the result of the most recent control frame.  T4 is four frames 

old (40 msec).  The torque is computed as: 

 

TORQUE = INERTIA * (SPEED – PREVIOUS_SPEED) * 100 Hz 

 



      

Torque telemetry at low speed should be used with caution.  The speed estimate is only 

updated when new hall sensor pulses are seen (or a very long period elapses).  If there has 

been no hall sensor pulse in the previous control frame then SPEED == 

PREVIOUS_SPEED and so TORQUE == 0. 

12.4.30 SLEEP_DUTY 

This read-only parameter shows the fraction of the last 10 msec control frame that the 

processor has spent in the sleep mode.  It provides a conservative measure of realtime 

margin. 

A value of 1.0 would indicate continual sleep.  A value of 0.0 would indicate that the 

processor is never sleeping, possibly due to the IDLE_INHIBIT parameter. 

12.4.31 DCDC_FREQ 

This read-only parameter shows the frequency of the internal DC/DC converter, averaged 

over the last 10 cycles.  The expected value is on the order of 100 kHz. 

12.4.32 LED_FREQ, LED_DUTY 

These read/write parameters set the frequency and duty cycle of pulses for the onboard 

UV LED.  Setting LED_DUTY to 0.0 turns the LED off.  Setting FREQ to 0.0 with 

DUTY non-zero turns the LED on at 100% duty cycle. 

In addition to its utility for discharging rotor charge, this can be used as an intentional 

load disturbance to characterize EMC filter response. 

12.4.33 DRIVE_FREQ 

This read/write parameter sets the switching frequency of the motor drive inverter.  

Permissible values are in the range of 100 kHz to 300 kHz. 

As a special case, a value of 0.0 will synchronize the motor drive inverter to the DC/DC 

converter. 

12.4.34 DCDC_SLOPE and DCDC_OFFSET 

These parameters determine the scaling between the observed DC/DC converter duty 

cycle and the VBUS telemetry. 

12.4.35 RESPONSE_AMPLITUDE, RESPONSE_PHASE 

These read-only parameters are updated every time SINUSOID_PHASE wraps around 

from 2 to 0.  They measure the speed oscillation that has resulted from a 

SINUSOID_SPEED or SINUSOID_VOLTAGE command. 

RESPONSE_AMPLITUDE is the amplitude of the speed sinusoid. 

RESPONSE_PHASE is the phase of the speed sinusoid with respect to the excitation 

sinusoid – expect a negative number which indicates a phase lag. 

12.4.36 FAULT_OVERTEMP[0|3] 

These read/write parameters set the fault limits for TEMP0 and TEMP3.  If the 

temperature exceeds this threshold, even for a single measurement cycle, the 

corresponding fault flag will be set. 



      

These limits detect overtemperature in the motor windings (channel 0) and the drive 

transistors (channel 3).  These are areas that could be expected to get hot from continual 

high-torque operation. 

12.4.37 FAULT_UNDERTEMP2 

This read/write parameter set the fault limit for TEMP2.  If the temperature is below this 

this threshold, even for a single measurement cycle, the corresponding fault flag will be 

set. 

The limit detects undertemperature in the processor (channel 2).  This is a proxy for 

bearing temperature, and can be used to prevent very low temperature startup. 

12.4.38 FAULT_TEMP_DELTA 

This read/write parameter set the fault limit for the difference between TEMP2 and 

TEMP3.  If the absolute value of this difference exceeds the threshold, even for a single 

measurement cycle, the corresponding fault flag will be set. 

Both TEMP2 and TEMP3 are mounted to the PCA.  A large temperature split between 

them suggests large power dissipation on the board. 

12.4.39 FAULT_OVERSPEED 

This read/write parameter set the fault limit for SPEED.  If the absolute value of SPEED 

exceeds the threshold, even for a single measurement cycle, the corresponding fault flag 

will be set.  This parameter is complementary to LIMIT_SPEED.  While LIMIT_SPEED 

only works in closed-loop modes, FAULT_OVERSPEED works in all modes.  By setting 

one limit higher than the other, the behavior of closed-loop modes can be changed – they 

can hold at LIMIT_SPEED, or they can fault immediately upon reaching a limit. 

12.4.40 FAULT_OVERCURRENT 

This read/write parameter set the fault limit for current.  If the computed absolute value 

of motor current exceeds the threshold, even for a single measurement cycle, the 

corresponding fault flag will be set.  This parameter is complementary to 

LIMIT_CURRENT.  While LIMIT_CURRENT only works in closed-loop modes, 

FAULT_OVERCURRENT works in all modes. 

For this limit to be effective, MOTOR_KT and MOTOR_RESISTANCE must be set 

correctly. 

12.4.41 KT_ESTIMATE, R_ESTIMATE 

Every time that SINUSOID_VOLTAGE updates RESPONSE_AMPLITUDE and 

RESPONSE_PHASE, these two read-only parameters are also updated.  They are the 

values of motor KT and R that best fit the response sinusoid, given the INERTIA 

parameter that is assumed to be known. 

The user must copy these values over to MOTOR_KT and MOTOR_RESISTANCE as 

part of an initial calibration operation – this is not done automatically. 



      

12.4.42 DRY_FRICTION_ESTIMATE, WET_FRICTION_ESTIMATE, 
AERO_FRICTION_ESTIMATE, RUNDOWN_TIME 

When the RUNDOWN mode completes, these read-only parameters are updated.  The 

friction estimates are the best fit to the function: 

𝑇𝑜𝑡𝑎𝑙𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑟𝑦𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑊𝑒𝑡𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝑠𝑝𝑒𝑒𝑑 + 𝐴𝑒𝑟𝑜𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝑠𝑝𝑒𝑒𝑑2 

The sign of DRY_FRICTION_ESTIMATE is the same as the sign of the starting speed 

for the rundown.  A rundown from a positive speed will result in a positive dry friction 

estimate, and a negative starting speed will result in a negative dry friction estimate.  The 

wet friction estimate should always be positive. 

RUNDOWN_TIME measures the time, in seconds, for the wheel speed to reach zero. 

12.4.43 MODE 

This parameter stores the wheel’s current mode.  It is more often accessed through file 0, 

where the mode and command value can be read or written simultaneously. 

12.4.44 HALL_IMPOSSIBLE 

This value counts the number of times that a transition to an “impossible” digital Hall-

effect sensor configuration is seen.  Impossible configurations are all “0”, or all “1”.  This 

is an error condition, and would normally indicate failure of a sensor or loss of a rotor 

magnet.  It is read/write, and can be written as zero to reset the count.  The count range is 

0..255.  If an impossible configuration occurs with the count at 255 it will cycle back to 0. 

12.4.45 HALL_SKIP 

This value counts the number of times that a Hall-effect sensor pattern transitions to 

another pattern that should not be immediately adjacent.  Adjacent sensor patterns are those 

that differ by only one bit. 

12.4.46 CONTROL_OVERFLOW 

This value counts the number of control frames where the control algorithm has not 

finished processing before the start of the next frame.  This is an error condition, and would 

be expected to result in poor control.  It is read/write, and can be written as zero to reset 

the count.  The count range is 0..255.  If a control overflow occurs with the count at 255 it 

will cycle back to 0. 

Issuing a CRC command over a large memory range is one sure-fire way to cause the count 

to increase. 

12.4.47 SPEED_TABLE_SIZE 

This value shows the number of digital Hall sensor transitions that are held in the transition 

table.   Transitions are discarded if they are older than MAX_SPEED_AGE in time, if a 

complete rotor revolution has occurred since them, or if a rotor direction reversal is 

detected. 



      

12.4.48 USED_TABLE_SIZE 

This value shows the number of digital Hall sensor transitions that are being used to 

compute the SPEED estimate.  The speed estimator will attempt to use the following 

number of transitions, in order of decreasing preference: 

• A number of transitions equal to a full revolution, plus one.  This is 3P+1, where 

P is the number of magnetic poles in the rotor.  This is the most accurate estimate. 

• A number of transitions in the form 6N+1, where N is as large a natural number 

as possible.  This number nulls error from Hall sensor orientation and offset, but 

incurs error from uneven magnet spacing. 

• Four transitions.  This number nulls error from Hall sensor orientation.  Hall 

sensor magnetic offset and uneven magnet spacing will introduce noise. 

• Three transitions.  This is suitable for very slow rotor speeds.  All noise sources 

apply. 

• Two transitions.  This is suitable for even slower rotor speeds.  All noise sources 

apply. 

• If two transitions are not available, the speed is declared to be 0.0 rad/sec. 

12.4.49 IDLE_INHIBIT 

If this value is zero then the processor will go into a power-saving idle mode when not 

needed.  It wakes immediately when interrupted, and there is no performance penalty.  If 

this value is non-zero then the processor will stay on continually.  Changing this 

parameter will show a modest change in power consumption. 

12.4.50 FLAGS_ACTIVE 

This read-only bitmap shows the present state of the fault flag bits, regardless of their 

mask state.  It is provided as a convenience, so that 7 individual flag registers do not have 

to be read. 
Table 25: FLAGS_ACTIVE bitfield 

Bit Function 

0 (lsb) FLAG_OVERTEMP0 value 

1 FLAG_UNDERTEMP2 value 

2 FLAG_OVERTEMP3 value 

3 FLAG_TEMP_DELTA value 

4 FLAG_OVERSPEED value 

5 FLAG_OVERCURRENT value 

6 FLAG_HALL_ERROR value 

7 One or more unmasked faults are 

active 

 

12.4.51 FAULTS_MASK 

This read/write bitmap shows which flag bits can generate a fault.  If a bit is set to ‘1’, 

then the corresponding flag is masked and will not generate faults.  If a bit is set to ‘0’ 

then the flag is not masked and can generate faults. 



      

Table 26: FAULTS_MASK bitfield 

Bit Function 

0 (lsb) FLAG_OVERTEMP0 masked 

1 FLAG_UNDERTEMP2 masked 

2 FLAG_OVERTEMP3 masked 

3 FLAG_TEMP_DELTA masked 

4 FLAG_OVERSPEED masked 

5 FLAG_OVERCURRENT masked 

6 FLAG_HALL_ERROR masked 

7 Unused 

 

 

12.4.52 FLAG_[OVERTEMP0|UNDERTEMP2|OVERTEMP3|OVERS
PEED|OVERCURRENT|HALL_ERROR] 

These read/write Boolean values show that a particular type of event has occurred.  When 

the event happens, the flag is set to ‘1’.  It can be cleared by the user writing ‘0’.  The 

user can also write ‘1’ to intentionally simulate an event. 

12.4.53 ADC_RAW_[VBUS|VCC|TEMP0|TEMP2|TEMP3|CALIBRAT
E] 

These read-only parameters show the raw ADC ratio for the corresponding telemetry 

channel.  They are intended for factory calibration. 

 

On the Rev 3A, only ADC_RAW_VBUS is implemented. 

12.4.54 HALT 

Writing a non-zero value to this parameter will cause the processor to intentionally 

become unresponsive (turn-off interrupts and busy-loop).  It is intended as a mechanism 

to test watchdogs. 

12.4.55 RESET_ENABLE 

This read/write bitmap shows which processor errors can generate resets.  If a bit is set to 

‘1’, then the corresponding reset is enabled. 
Table 27: RESET_ENABLE bitfield 

Bit Function 

0 (lsb) Watchdog reset enabled 

1 Data RAM multi-bit error reset enabled 

2 Program RAM multi-bit error reset enabled 

3-7 Unused 

 

 

The watchdog feature piggy-backs on the DC/DC converter frequency and voltage 

estimation process.  A counter counts DC/DC converter pulses.  After 10 pulses are 



      

counted, an interrupt is triggered.  The interrupt clears the counter.  If the timer reaches a 

count of 15, and if the watchdog is enabled, then a processor reset is triggered. 

 

Multi-bit RAM errors, which cannot be corrected by internal ECC, can be configured to 

cause resets.  Single-bit errors are immediately corrected by hardware. 

12.4.56 RESTART_MASK 

This value is copied into the “application restart mask” field of the diagnostics.  It 

determines which sorts of errors should lead to an autonomous application restart. 

12.4.57 STARTUP_DELAY 

When this value is non-zero, the effective control mode is IDLE and the fault 

comparators are inhibited.  It is decremented once every control frame (i.e. at 100 Hz) 

until zero. 

At application start or restart it is set to a value of 5, for a 50 msec delay.  The intent is to 

let the rotor speed estimator settle before making any control actuation.  This is most 

relevant if the application starts while the rotor is still spinning, as might be the case for 

an autonomous restart. 

12.4.58 LOCKUP 

When this value is non-zero, a processor lockup fault will be triggered on the next Hall-

effect sensor transition.  This is intended as a mechanism to test the lockup recovery 

code. 

12.5 Command Modes 

Command 

Number 

Command Name Command Value 

0x00 IDLE Ignored 

0x01 PWM Duty cycle (-1.0 to +1.0) 

0x02 VOLTAGE Volts (-Vbus to +Vbus) 

0x03 SPEED Rads/sec 

0x04 PWM_H1 Duty cycle (0 to +1.0) 

0x05 PWM_H2 Duty cycle (0 to +1.0) 

0x06 PWM_H3 Duty cycle (0 to +1.0) 

0x07 PWM_H4 Duty cycle (0 to +1.0) 

0x08 PWM_H5 Duty cycle (0 to +1.0) 

0x09 PWM_H6 Duty cycle (0 to +1.0) 

0x0A VOLTAGE_H1 Volts (0 to +Vbus) 

0x0B VOLTAGE_H2 Volts (0 to +Vbus) 

0x0C VOLTAGE_H3 Volts (0 to +Vbus) 

0x0D VOLTAGE_H4 Volts (0 to +Vbus) 

0x0E VOLTAGE_H5 Volts (0 to +Vbus) 

0x0F VOLTAGE_H6 Volts (0 to +Vbus) 

0x10 ACCEL Rads/sec² 

0x11 MOMENTUM N-m-sec 



      

0x12 TORQUE N-m 

0x16 STORE_FILES 0.0 or 1.0 or 2.0 

0x17 DEFAULT_FILES 0.0 or 1.0 

0x18 PWM_P0 Duty cycle (0 to +1.0) 

0x19 PWM_P1 Duty cycle (0 to +1.0) 

0x1A PWM_P2 Duty cycle (0 to +1.0) 

0x34 SINUSOID_SPEED Rads/sec 

0x35 SINUSOID_VOLTAGE Volts 

0x36 RUNDOWN 0.0 or 1.0 

12.5.1 IDLE 

In IDLE mode the motor drive is turned off.  If it is spinning, the rotor is free to slow down 

under friction. 

12.5.2 PWM 

In PWM mode the motor is driven with a constant duty cycle.  The command may be 

between -1.0 and 1.0.  This is interpreted as a duty cycle between 0.0 and 1.0, in either the 

positive or negative direction. 

PWM mode does not use closed-loop current or speed control, so it is not of great use in 

spacecraft fine control.  However it does allow for extremely high torques (and very high 

power consumption!), so it may be used open-loop during slew maneuvers. 

12.5.3 VOLTAGE 

In VOLTAGE mode the motor is driven with closed-loop voltage control.  Positive values 

indicate voltage that will produce positive speed, while negative values indicate voltage 

that will produce negative speed. 

This mode can potentially be used for spacecraft fine control at high bandwidth. 

12.5.4 SPEED 

In SPEED mode the rotor speed is servoed to the command value.  The closed-loop speed 

controller outputs a voltage setpoint, which is in turn used by the closed-loop voltage 

controller. 

12.5.5 PWM_H[1..6] 

In these modes the digital Hall-effect sensors are overridden, and the binary code is set to 

the H1..H6 value.  Other than that, the mode is identical to PWM mode.  It allows a 

particular PWM duty cycle to be driven onto a particular motor phase regardless of the 

rotor position.  The rotor will typically not spin in these modes, but will oscillate about a 

particular electrical angle. 

12.5.6 VOLTAGE_H[1..6] 

In these modes the digital Hall-effect sensors are overridden, and the binary code is set to 

the H1..H6 value.  Other than that, the mode is identical to VOLTAGE mode.  It allows a 

particular voltage to be driven onto a particular motor phase regardless of the rotor position.  



      

The rotor will typically not spin in these modes, but will oscillate about a particular 

electrical angle. 

12.5.7 ACCEL 

When not in ACCEL mode, the ACCEL_TARGET file is set to SPEED.  In ACCEL mode, 

the acceleration command is added to ACCEL_TARGET each control frame.  

ACCEL_TARGET is then used as the setpoint for the speed mode controller. 

12.5.8 MOMENTUM 

In MOMENTUM mode, the SPEED controller is used with a setpoint equal to the 

commanded MOMENTUM divided by the INERTIA file. 

12.5.9 TORQUE 

In TORQUE mode, the ACCEL controller is used with a setpoint equal to the commanded 

TORQUE divided by the INERTIA file. 

12.5.10 STORE_FILES 

If the STORE_FILES mode is entered with a value of exactly 1.0, all of the parameters 

will be stored to user FRAM.  The mode value will be set to 0.0, to indicate that the write 

has occurred and to prevent multiple writes.  Whenever the wheel resets it will start with 

the stored parameters. 

If the STORE_FILES mode is entered with a value of exactly 2.0, all of the parameters 

will be stored to bootloader FRAM.  The mode value will be set to 0.0, to indicate that the 

write has occurred and to prevent multiple writes. 

This operation is used at the factory, while the bootloader FRAM is still unlocked, to store 

hardware-specific calibration parameters.  After the bootloader FRAM has been locked, 

subsequent commands will fail silently. 

This mode does not drive the motor, and is equivalent in that way to IDLE. 

12.5.11 DEFAULT_FILES 

If the DEFAULT_FILES mode is entered with a value of exactly 1.0 the stored parameters 

in user FRAM are erased.  The mode value will be set to 0.0, to indicate that the erasure 

has occurred and to prevent multiple erasures.  Whenever the wheel resets it will start with 

default parameters from bootloader FRAM.  This command has no effect on the parameters 

currently in the wheel parameter file, only on the parameters after the next reset. 

This mode does not drive the motor, and is equivalent in that way to IDLE. 

12.5.12 PWM_P[0..2] 

The PWM_P[0..2] modes allow the duty cycle of a particular motor phase (0..2) to be set.  

Only the one phase is driven, and none of the phases is connected to ground. 



      

12.5.13 SINUSOID_SPEED 

This mode puts the wheel in a closed-loop state, tracking a sinusoidal speed profile.  The 

amplitude of the sinusoid is given by the mode command, while the frequency and offset 

are given by the SINUSOID_FREQ and SINUSOID_OFFSET files. 

𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∙ 𝑠𝑖𝑛(𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑃𝐻𝐴𝑆𝐸) + 𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑂𝐹𝐹𝑆𝐸𝑇 

𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑃𝐻𝐴𝑆𝐸 ← (𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝑃𝐻𝐴𝑆𝐸 + ∆𝑡 ∙ 𝑆𝐼𝑁𝑈𝑆𝑂𝐼𝐷𝐹𝑅𝐸𝑄)𝑚𝑜𝑑𝑢𝑙𝑜 2𝜋 

This mode can be used to characterize the closed-loop frequency response of the wheel.  

Be careful not to use too large an amplitude, as overheating can occur.  A 100 rad/sec 

amplitude 1 Hz sinusoid is used in the factory to test the overtemperature shutdown. 

12.5.14 SINUSOID_VOLTAGE 

This mode is equivalent to SINUSOID_SPEED, except that it applies a sinusoidal 

voltage profile to the motor. 

12.5.15 RUNDOWN 

This mode is used to estimate the friction in the reaction wheel.  To use it: 

1. Spin the wheel to some starting speed, usually using a SPEED command. 

2. Send the command RUNDOWN 1.0.  The motor will turn off, and the wheel will 

coast to a stop. 

3. Poll the COMMAND variable, until it turns to 0.0. 

4. Read the DRY_FRICTION_ESTIMATE, WET_FRICTION_ESTIMATE, and 

AERO_FRICTION_ESTIMATE parameters. 

5. Read RUNDOWN_TIME. 

 

RUNDOWN will only collect data when COMMAND is exactly 1.0.  When the wheel 

speed hits zero, it clears COMMAND to 0.0. 

13 Special Features 

13.1 Virtual Oscilloscope 

Various internal waveforms can be drive out of one of the RS485 ports, while the other 

port remains in normal operation for commands and telemetry.  This is of no use on-orbit, 

but can be useful to help debug issues in an integrated system where it is hard to use an 

oscilloscope probe. 

The RS485 port must be resistively terminated (120 ohms recommended), since the 

modulated signal is the drive-enable, not the output data. 

 

To output a waveform on the RS485-0 port, perform the following sequence while in 

application mode: 

• POKE 0x00006200 to 0x4000207C 

• POKE 0x00000013 to 0x40020000 [Must be full 32-bit write] 

• POKE 0x00000001 to 0x40020010 

• POKE [Channel Number] to 0x40020014 



      

To output a waveform on the RS485-1 port, perform the following sequence while in 

application mode: 

• POKE 0x00006200 to 0x4000206C 

• POKE 0x00000013 to 0x40031000 [Must be full 32-bit write] 

• POKE 0x00000001 to 0x40031010 

• POKE [Channel Number] to 0x40031014 

 

 

Channel Number Function Notes 

0x09 Processor awake/sleep state  

0x26 Hall sensor A These can be used as an external 

speed tach output 0x28 Hall sensor B 

0x35 Hall sensor C 

0x41 DC/DC converter waveform  

0x4A Motor phase B PWM  

0x4B Motor phase A Enable  

0x4C Motor phase A PWM  

0x4D Motor phase B Enable  

0x4E Motor phase C PWM  

0x4F Motor phase C Enable  

0x52 LED drive PWM  

0x54 Motor drive PWM  

0x7F Clock divider 7 POKE 0x00000FA0 to 

0x40000064 

This generates a 10.00 kHz pulse 

train.  Can be used to look for 

crystal oscillator drift over 

temperature. 

 

A hardware reset is the easiest way to cancel the virtual oscilloscope configuration. 

13.2 Inducing Processor Faults 

It is useful to intentionally trigger various processor fault states, to verify the fault 

handler behavior. 

Fault Type Trigger Command State 

Hardfault POKE 0x01 to 0xCAFEBABE Bootloader or application 

 

Note that these faults are executed immediately upon receipt of the POKE command.  No 

NSP reply will be sent. 

13.3 Autonomous Restart 

The RW4 processor is rad-hard, with ECC on all memories and registers.  We might 

think from this that it would be guaranteed to operate correctly in all circumstances, 

assuming no software bugs.  However, testing has shown that there is an ESD sensitivity.  

ESD events can cause processor hardfault and lockup events, and increment ECC 



      

counters.  We hypothesize that this is due to spurious short clock pulses which leave an 

instruction half-executed. 

The wheel can be configured to recover from these events with minimal user impact.  To 

do this, set the RESTART_MASK byte.  When an error occurs, the processor will reset 

and then immediately restart the application program.  The EDAC memory will be 

untouched, including the command mode and value.  Motor drive will resume after a 50-

60 msec period of IDLE.  The only signal to the user that this has occurred is an 

incremented reset count visible in the diagnostics. 

Multi-bit memory errors can cause a reset if configured through RESET_ENABLE.  

Such an error never results in an autonomous restart – the wheel will instead remain in 

bootloader mode until commanded. 


	1 Revision Notes
	2 Scope
	3 Cautions
	3.1 UV LED [Rev 2A hardware only]

	4 Mechanical
	4.1 RW4-1.0 Mechanicals
	4.1.1 Mass Properties
	4.1.2 Remove Before Flight


	5 Environmental
	5.1 Storage
	5.2 Thermal
	5.3 Pressure
	5.4 Vibration
	5.5 LED Lifetime [Rev 2A only]

	6 Electrical
	6.1 Micro-D
	6.2 Programming Header

	7 Signals
	7.1 Address [0|1|2]
	7.2 RS485_0[A|B], RS485_1[A|B]
	7.3 Primary Power, Primary Return
	7.4 Secondary Return
	7.5 Power Architecture
	7.6 Undervoltage Limit
	7.7 Overvoltage Limit
	7.8 Regenerative Braking

	8 Protocol Layer 2 (Data Link Layer)
	8.1 Asynchronous Serial

	9 Protocol Layer 3 (Network Layer)
	9.1 Asynchronous Serial NSP Encapsulation

	10 Protocol Layer 4 (Transport Layer)
	10.1 Command and Reply
	10.2 NSP Message Format
	10.3 NSP Addresses
	10.4 Wheel Address and Port Selection
	10.5 Default RW4-1.0 Addressing
	10.6 Message Control Field
	10.7 Data Field
	10.8 Message CRC
	10.9 Error Conditions

	11 Protocol Layer 5 (Session Layer)
	11.1 Operating Modes
	11.1.1 Bootloader to Application Transition
	11.1.2 Application to Bootloader Transition

	11.2 Test Scripts
	11.3 Byte Order
	11.4 Command Codes
	11.5 PING (0x00)
	11.5.1 Reply Format

	11.6 INIT (0x01)
	11.6.1 Command Format
	11.6.2 Command Format
	11.6.3 Reply Format

	11.7 PEEK (0x02)
	11.7.1 Short Command Format
	11.7.2 Long Command Format
	11.7.3 Reply Format

	11.8 POKE (0x03)
	11.8.1 Command Format
	11.8.2 Reply Format

	11.9 DIAGNOSTIC (0x04)
	11.9.1 Command Format
	11.9.2 Reply Format
	11.9.2.1 Diagnostic Result Structure


	11.10 CRC (0x06)
	11.10.1.1 Command Format
	11.10.1.2 Reply Format

	11.11 READ FILE (0x07)
	11.11.1 Command Format
	11.11.2 Reply Format
	11.11.2.1 Mode Reply Structure
	11.11.2.2 Normal Reply Structure


	11.12 WRITE FILE (0x08)
	11.12.1 Command Format
	11.12.1.1 Mode Store Structure
	11.12.1.2 Normal Store Structure

	11.12.1 Reply Format
	11.12.1.1 Mode Reply Structure
	11.12.1.2 Normal Reply Structure


	11.13 READ EDAC (0x09)
	11.13.1 Short Command Format
	11.13.2 Long Command Format
	11.13.3 Reply Format

	11.14 WRITE EDAC (0x0A)
	11.14.1 Command Format
	11.14.2 Reply Format

	11.15 GATHER EDAC (0X0B)
	11.15.1 Command Format
	11.15.1.1 Gather Command Structure

	11.15.1 Result Format
	11.15.1.1 Gather Result Structure



	12 Protocol Layer 6 (Presentation Layer)
	12.1 Fault Handling
	12.2 Memory Map
	12.2.1 Program RAM
	12.2.2 Data RAM
	12.2.3 Bootloader FRAM
	12.2.4 User FRAM
	12.2.5 Application Images
	12.2.6 Error Mitigation
	12.2.7 ECC Trap Words

	12.3 Diagnostics
	12.4 EDAC Memory
	12.4.1 Command Value
	12.4.2 VBUS
	12.4.3 VDD [Rev 3A only]
	12.4.4 VCC
	12.4.5 TEMP0
	12.4.6 TEMP1 [Rev 3A only]
	12.4.7 TEMP[2|3]
	12.4.8 TEMP_R[0|2|3]
	12.4.9 SPEED
	12.4.10 MOMENTUM
	12.4.11 HALL_DIGITAL
	12.4.12 ADC_CALIBRATE
	12.4.13 SPEED_[P|I|D]_GAIN
	12.4.14 MIN_GAIN_SPEED, MAX_GAIN_SPEED
	12.4.15 INERTIA
	12.4.16 MOTOR_KT
	12.4.17 GAIN_SCHEDULE[1..4]
	12.4.18 PROPORTIONAL_OVERRIDE
	12.4.19 CONTROL_TYPE
	12.4.20 MAX_SPEED_AGE
	12.4.21 LIMIT_SPEED
	12.4.22 LIMIT_CURRENT
	12.4.23 MOTOR_RESISTANCE
	12.4.24 SINUSOID_[PHASE, FREQ, OFFSET]
	12.4.25 PREVIOUS_SPEED
	12.4.26 SPEED_INTEGRATOR
	12.4.27 SPEED_LAST_ERROR
	12.4.28 ACCEL_TARGET
	12.4.29 TORQUE_[T0..T4]
	12.4.30 SLEEP_DUTY
	12.4.31 DCDC_FREQ
	12.4.32 LED_FREQ, LED_DUTY
	12.4.33 DRIVE_FREQ
	12.4.34 DCDC_SLOPE and DCDC_OFFSET
	12.4.35 RESPONSE_AMPLITUDE, RESPONSE_PHASE
	12.4.36 FAULT_OVERTEMP[0|3]
	12.4.37 FAULT_UNDERTEMP2
	12.4.38 FAULT_TEMP_DELTA
	12.4.39 FAULT_OVERSPEED
	12.4.40 FAULT_OVERCURRENT
	12.4.41 KT_ESTIMATE, R_ESTIMATE
	12.4.42 DRY_FRICTION_ESTIMATE, WET_FRICTION_ESTIMATE, AERO_FRICTION_ESTIMATE, RUNDOWN_TIME
	12.4.43 MODE
	12.4.44 HALL_IMPOSSIBLE
	12.4.45 HALL_SKIP
	12.4.46 CONTROL_OVERFLOW
	12.4.47 SPEED_TABLE_SIZE
	12.4.48 USED_TABLE_SIZE
	12.4.49 IDLE_INHIBIT
	12.4.50 FLAGS_ACTIVE
	12.4.51 FAULTS_MASK
	12.4.52 FLAG_[OVERTEMP0|UNDERTEMP2|OVERTEMP3|OVERSPEED|OVERCURRENT|HALL_ERROR]
	12.4.53 ADC_RAW_[VBUS|VCC|TEMP0|TEMP2|TEMP3|CALIBRATE]
	12.4.54 HALT
	12.4.55 RESET_ENABLE
	12.4.56 RESTART_MASK
	12.4.57 STARTUP_DELAY
	12.4.58 LOCKUP

	12.5 Command Modes
	12.5.1 IDLE
	12.5.2 PWM
	12.5.3 VOLTAGE
	12.5.4 SPEED
	12.5.5 PWM_H[1..6]
	12.5.6 VOLTAGE_H[1..6]
	12.5.7 ACCEL
	12.5.8 MOMENTUM
	12.5.9 TORQUE
	12.5.10 STORE_FILES
	12.5.11 DEFAULT_FILES
	12.5.12 PWM_P[0..2]
	12.5.13 SINUSOID_SPEED
	12.5.14 SINUSOID_VOLTAGE
	12.5.15 RUNDOWN


	13 Special Features
	13.1 Virtual Oscilloscope
	13.2 Inducing Processor Faults
	13.3 Autonomous Restart


